{-# OPTIONS --without-K #-}
module hott.truncation.core where
open import sum
open import equality
open import function.core
open import function.fibration
open import function.extensionality
open import function.isomorphism
open import sets.nat.core
open import hott.equivalence
open import hott.level.core
open import hott.level.closure
module _ {i j i' j'}{A : Set i}{A' : Set i'}
{B : A → Set j}{B' : A' → Set j'}
(f : A → A')
(g : (a : A) → B a → B' (f a)) where
private
E E' : Set _
E = Σ A B
E' = Σ A' B'
p : E → A
p = proj₁
p' : E' → A'
p' = proj₁
t : E → E'
t (a , b) = (f a , g a b)
module _ (f-equiv : weak-equiv f)
(t-equiv : weak-equiv t) where
private
φ : A ≅ A'
φ = ≈⇒≅ (f , f-equiv)
τ : E ≅ E'
τ = ≈⇒≅ (t , t-equiv)
lem : (a : A)(e : E) → (p e ≡ a) ≅ (p' (t e) ≡ f a)
lem a e = iso≡ φ
fib-equiv : (a : A) → B a ≅ B' (f a)
fib-equiv a = sym≅ (fib-iso a) ·≅ Σ-ap-iso τ (lem a) ·≅ fib-iso (f a)
postulate
Trunc : ∀ {i} → ℕ → Set i → Set i
Trunc-level : ∀ {i} n {X : Set i} → h n (Trunc n X)
[_] : ∀ {i n} {X : Set i} → X → Trunc n X
Trunc-ext : ∀ {i j} n (X : Set i)(Y : Set j)
→ (Trunc n X → Y) → X → Y
Trunc-ext n X Y f x = f [ x ]
postulate
Trunc-univ : ∀ {i j} n (X : Set i)(Y : Set j) → h n Y
→ weak-equiv (Trunc-ext n X Y)
Trunc-elim-iso : ∀ {i j} n (X : Set i)(Y : Set j) → h n Y
→ (Trunc n X → Y) ≅ (X → Y)
Trunc-elim-iso n X Y hY = ≈⇒≅ (Trunc-ext n X Y , Trunc-univ n X Y hY)
Trunc-elim : ∀ {i j} n (X : Set i)(Y : Set j) → h n Y
→ (X → Y) → (Trunc n X → Y)
Trunc-elim n X Y hY = invert (Trunc-elim-iso n X Y hY)
Trunc-elim-β : ∀ {i j} n (X : Set i)(Y : Set j)(hY : h n Y)
→ (f : X → Y)(x : X)
→ Trunc-elim n X Y hY f [ x ] ≡ f x
Trunc-elim-β n X Y hY f x = funext-inv (_≅_.iso₂ (Trunc-elim-iso n X Y hY) f) x
module _ {i j} n {X : Set i} (Y : Trunc n X → Set j)
(hY : (x : Trunc n X) → h n (Y x)) where
private
Z : Set _
Z = Σ (Trunc n X) Y
hZ : h n Z
hZ = Σ-level (Trunc-level n) hY
Sec₂ : ∀ {k}{A : Set k} → (A → Trunc n X) → Set _
Sec₂ {A = A} r = (x : A) → Y (r x)
Sec : ∀ {k} → Set k → Set _
Sec A = Σ (A → Trunc n X) Sec₂
τ : Sec (Trunc n X) ≅ Sec X
τ = sym≅ ΠΣ-swap-iso ·≅ Trunc-elim-iso n X Z hZ ·≅ ΠΣ-swap-iso
ψ : (r : Trunc n X → Trunc n X)
→ (Sec₂ r) ≅ Sec₂ (r ∘ [_])
ψ = fib-equiv {A = Trunc n X → Trunc n X}{A' = X → Trunc n X}{B = Sec₂} {B' = Sec₂}
(Trunc-ext n X (Trunc n X)) (λ r g x → g [ x ])
(Trunc-univ n X (Trunc n X) (Trunc-level n))
(proj₂ (≅⇒≈ τ))
Trunc-dep-iso : Sec₂ (λ x → x) ≅ Sec₂ [_]
Trunc-dep-iso = ψ (λ x → x)
Trunc-dep-elim : ((x : X) → Y [ x ]) → (x : Trunc n X) → Y x
Trunc-dep-elim = invert Trunc-dep-iso
Trunc-dep-elim-β : (d : ((x : X) → Y [ x ]))
→ (x : X) → Trunc-dep-elim d [ x ] ≡ d x
Trunc-dep-elim-β d = funext-inv (_≅_.iso₂ Trunc-dep-iso d)