{-# OPTIONS --without-K #-}
module function.isomorphism.properties where
open import level
open import sum
open import sets.nat.core
open import equality.core
open import equality.calculus
open import equality.reasoning
open import function.core
open import function.fibration
open import function.overloading
open import function.extensionality.core
open import function.extensionality.proof
open import function.isomorphism.core
open import function.isomorphism.coherent
open import function.isomorphism.lift
open import function.isomorphism.utils
open import function.isomorphism.two-out-of-six
open import hott.equivalence.core
open import hott.equivalence.alternative
open import hott.level.core
open import hott.loop.core
open import sets.unit
iso-adjunction : ∀ {i j}{X : Set i}{Y : Set j}
→ (isom : X ≅ Y)(x : X)(y : Y)
→ (apply isom x ≡ y) ≅ (x ≡ invert isom y)
iso-adjunction {i}{j}{X}{Y} isom x y
= family-eq-iso total' (λ { (y , x) q → comm' x y q }) (y , x)
where
open _≅_ isom
open ≅-Reasoning
to-we : weak-equiv to
to-we = proj₂ (≅⇒≈ isom)
total' : (Σ (Y × X) λ { (y , x) → to x ≡ y })
≅ (Σ (Y × X) λ { (y , x) → x ≡ from y})
total' = Σ-assoc-iso
·≅ ( Σ-ap-iso refl≅ λ y
→ contr-⊤-iso (to-we y)
·≅ sym≅ (contr-⊤-iso (singl-contr' (from y))) )
·≅ sym≅ Σ-assoc-iso
comm' : (x : X)(y : Y)(p : to x ≡ y)
→ proj₁ (apply total' ((y , x) , p)) ≡ (y , x)
comm' x y q = ap (_,_ y) (sym (ap from q) · iso₁ x)
private
iso≡-lem : ∀ {i j}{X : Set i}{Y : Set j}
→ (isom : X ≅ Y)
→ (x x' : X)
→ weak-equiv (λ (p : x ≡ x') → ap (invert isom) (ap (apply isom) p))
iso≡-lem {X = X} isom x x' = step₃
where
step₁ : ∀ {k}{A : Set k}(a a' : A)
→ weak-equiv {X = a ≡ a'} {Y = a ≡ a'} (ap (λ x → x))
step₁ a a' = subst weak-equiv (sym (funext ap-id)) (proj₂ (≅⇒≈ refl≅))
step₂ : weak-equiv (λ (p : x ≡ x') → ap (invert isom ∘ apply isom) p)
step₂ = subst (λ u → weak-equiv {X = x ≡ x'} (ap u)) (sym (funext (_≅_.iso₁ isom)))
(step₁ x x')
step₃ = subst weak-equiv (sym (funext λ p → ap-hom (apply isom) (invert isom) p)) step₂
iso≡ : ∀ {i j}{X : Set i}{Y : Set j}
→ (isom : X ≅ Y)
→ {x x' : X}
→ (x ≡ x')
≅ (apply isom x ≡ apply isom x')
iso≡ isom {x}{x'} = two-out-of-six.f-iso
(ap (apply isom))
(ap (invert isom))
(ap (apply isom))
(iso≡-lem isom x x')
(iso≡-lem (sym≅ isom) (apply isom x) (apply isom x'))
private
abstract
Ω-iso' : ∀ {i j}{X : Set i}{Y : Set j}(n : ℕ)
→ (φ : X ≅ Y)(x : X)
→ Ω n x ≅ Ω n (apply φ x)
Ω-iso' {X = X}{Y = Y} zero φ x = φ
Ω-iso' (suc n) φ x = Ω-iso' n (iso≡ φ) refl
Ω-iso-β : ∀ {i j}{X : Set i}{Y : Set j}(n : ℕ)
→ (φ : X ≅ Y)(x : X)
→ (p : Ω n x)
→ apply (Ω-iso' n φ x) p ≡ mapΩ n (apply φ) p
Ω-iso-β zero φ x p = refl
Ω-iso-β (suc n) φ x p = Ω-iso-β n (iso≡ φ) refl p
Ω-iso : ∀ {i j}{X : Set i}{Y : Set j}(n : ℕ)
→ (φ : X ≅ Y)(x : X)
→ Ω n x ≅ Ω n (apply φ x)
Ω-iso n φ x = ≈⇒≅ ( (λ p → mapΩ n (apply φ) p)
, subst weak-equiv eq we)
where
abstract
we : weak-equiv (apply (Ω-iso' n φ x))
we = proj₂ (≅⇒≈ (Ω-iso' n φ x))
eq : apply (Ω-iso' n φ x) ≡ mapΩ n (apply φ)
eq = funext (Ω-iso-β n φ x)
abstract
subtype-eq : ∀ {i j k}{A : Set i}{P : A → Set j}
→ ((x : A) → h 1 (P x))
→ {X : Set k}
→ (isom : X ≅ Σ A P)
→ {x y : X}
→ (proj₁ (apply isom x) ≡ proj₁ (apply isom y))
→ x ≡ y
subtype-eq hP isom p = iso⇒inj isom
(unapΣ (p , h1⇒prop (hP _) _ _))