{-# OPTIONS --without-K #-} module sets.fin.ordering where open import equality.core open import function.isomorphism open import sets.core open import sets.fin.core open import sets.fin.properties import sets.nat.ordering as N _<_ : ∀ {n} → Fin n → Fin n → Set i < j = toℕ i N.< toℕ j infixr 4 _<_ ord-from-ℕ : ∀ {n} {i j : Fin n} → Ordering N._<_ (toℕ i) (toℕ j) → Ordering _<_ i j ord-from-ℕ (lt p) = lt p ord-from-ℕ (eq p) = eq (toℕ-inj p) ord-from-ℕ (gt p) = gt p compare : ∀ {n} → (i j : Fin n) → Ordering _<_ i j compare i j = ord-from-ℕ (N.compare (toℕ i) (toℕ j))