{-# OPTIONS --without-K #-} module pointed.equality where open import sum open import equality.core open import function.extensionality open import function.isomorphism.core open import function.isomorphism.utils open import pointed.core pmap-eq : ∀ {i j}{X : Set i}{Y : Set j}{x₀ : X}{y₀ : Y} → {f : X → Y}{p : f x₀ ≡ y₀} → {g : X → Y}{q : g x₀ ≡ y₀} → (Σ ((x : X) → f x ≡ g x) λ γ → p ≡ γ x₀ · q) ≅ _≡_ {A = PMap (X , x₀) (Y , y₀)} (f , p) (g , q) pmap-eq {X = X}{Y}{x₀}{y₀} = Σ-ap-iso' strong-funext-iso lem ·≅ Σ-split-iso where lem : {f : X → Y}{p : f x₀ ≡ y₀} → {g : X → Y}{q : g x₀ ≡ y₀} → (h : f ≡ g) → (p ≡ funext-inv h x₀ · q) ≅ (subst (λ u → u x₀ ≡ y₀) h p ≡ q) lem refl = refl≅