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1 Introduction
Topology is the study of those properties of “geometric objects” that are invari-
ant under “continuous transformations”.

In these notes, we will make the above informal description precise, by intro-
ducing the axiomatic notion of a topological space, and the appropriate notion
of continuous function between such spaces.

Today, topology is used as a base language underlying a great part of modern
mathematics, including of course most of geometry, but also analysis and alge-
bra. As a discipline of its own, one could say that topology is mainly concerned
with the classification of spaces up to homeomorphism, which is the notion of
“isomorphism” of spaces resulting from the above choice of maps.

Intuitively, we can think of homeomorphisms as procedures that take a space
and “deform” it by twisting, bending, stretching or compressing it, but without
ever creating “tears” or puncturing “holes”. The standard example is turning a
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torus (fig. 5) into (the surface of) a coffee mug.1

The formalism described in these notes will allow us to turn the visual intuition
underlying transformations such as the one above into rigorous mathematical
proofs. Since it is not too easy to parameterise a coffee mug with a nice simple
formula, we will not actually deal with this particular example, but we will see
a few similar ones, which should hopefully serve to convince the reader that all
these constructions can actually be made precise.

On the other hand, we will see that most of the difficulty in topology is not in
constructing homeomorphisms, where our geometric intuition can guide us, but
instead in showing that no homeomorphism can exist between a certain pair of
spaces. This is where the theory developed in these notes will really help. We
will define certain “attributes” of topological spaces that can be proved to be
preserved by homeomorphisms, and this will allow us to make sure that what
we regard as different spaces are indeed different as far as topology is concerned.

Section 2 will be concerned with reviewing the probably familiar notion of met-
ric space. The theory of metric spaces can be used a setting for developing
topology, but the rigidity of the metric structure makes certain constructions
(e.g. quotients) not possible. Furthermore, the notion of distance in a metric
space is not invariant under the transformations we are interested in, meaning
that metric spaces are in some sense “over-specified”, or, in other words, carry
“too much” information.

In section 3 we will therefore introduce the notion of topological space, which
will be the focus of the remainder of these notes. Metric spaces will provide a
very important class of examples of topological spaces, but we will see that even
in those examples it is often best to ignore the metric structure.

Section 4 will examine notions of convergence in spaces, connecting them to
the familiar case of sequences in metric space. We will see that convergence of
sequences is often not general enough to capture the topological structure of
a space, and we will remedy this using filters and the corresponding notion of
convergence.

After that, we will turn our attention to topological properties of spaces,
which will allow us to take our first steps towards distinguishing pairs of
non-homeomorphic spaces. First is the notion of connectedness in section 6,
which formalises the intuitive idea of a space that is made up of a single “piece”.
Next is section 7, dealing with separation and countability axioms, which are
technical well-behavedness conditions, are useful to transport some of the
techniques used in metric spaces to more general topological spaces. Section 8
is instead devoted to compactness, which generalises to arbitrary topological
spaces the properties of closed and bounded subsets of ℝ𝑛.

Finally, section 9 will provide a taste of algebraic topology, by developing what is
probably the most basic of the algebraic invariants of a space: the fundamental

1See https://en.wikipedia.org/wiki/Homeomorphism for an animation.
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group. It will allow us to distinguish more pairs of spaces, as well as to prove
the classical fixed point theorem by Brouwer.

Throughout these notes, we will encounter several examples of spaces, some of
which may be already familiar. We will use those spaces to refine our under-
standing of the topological properties that we will study, as well as to demon-
strate how the techniques developed here can help us establish whether two
spaces are homeomorphic.

2 Review of metric spaces
Definition 2.0.1. A metric on a set 𝑋 is a function 𝑑 ∶ 𝑋 ×𝑋 → ℝ+ satisfying:

(i) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 (symmetry);
(iii) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 (triangle inequality).

A metric space is a set 𝑋 equipped with a metric 𝑑.

2.1 Examples
Let 𝑑 ∶ ℝ𝑛 × ℝ𝑛 → ℝ+ the familiar Euclidean distance, defined by:

𝑑(𝑥, 𝑦) ∶= ‖𝑥 − 𝑦‖, where ‖𝑥‖ ∶= √
𝑛

∑
𝑖=1

|𝑥𝑖|2.

It is immediate to verify that 𝑑 satisfies all the properties of Definition 2.0.1.
Therefore, it defines a metric on ℝ𝑛. In the following, we will always regard ℝ𝑛

as a metric space by implicitly equipping it with the Euclidean metric, and we
will refer to it as the Euclidean space of dimension 𝑛.

Similarly, there is a Euclidean distance on ℂ𝑛, given by the same formula, where
now | − | denotes the absolute value (or magnitude) of a complex number.

A more trivial example is that of a discrete metric space. Let 𝑋 be any set, and
define

𝑑(𝑥, 𝑦) = {1 if 𝑥 ≠ 𝑦
0 if 𝑥 = 𝑦.

All the properties of Definition 2.0.1 are easily verified.

2.2 Balls and open sets
We can directly generalise the notion of a ball in Euclidean space to a metric
space:

Definition 2.2.1. Let 𝑋 be a metric space with metric 𝑑. Given a point 𝑝 ∈ 𝑋,
and a real number 𝑟 > 0, define a subset of 𝑋 as follows:

𝐵𝑟(𝑝) = {𝑥 ∈ 𝑋 | 𝑑(𝑥, 𝑝) < 𝑟}.
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We will refer to 𝐵𝑟(𝑝) as the (open) ball of centre 𝑝 and radius 𝑟.

When we want to make the metric explicit, we will write 𝐵𝑑
𝑟 (𝑝) for the open

ball of centre 𝑝 and radius 𝑟 with respect to the metric 𝑑.

Definition 2.2.2. A subset 𝑈 of a metric space 𝑋 is said to be open if for every
point 𝑥 ∈ 𝑈 there exists 𝜀 > 0 such that 𝐵𝜀(𝑥) ⊆ 𝑈 .

Exercise 1. Prove that 𝑈 ⊆ 𝑋 is open if and only if it is a union of open balls.
Deduce in particular that open balls are open.

Lemma 2.2.3. Open subsets of a metric space 𝑋 are stable under finite inter-
sections and arbitrary unions.

Proof. Let (𝑈𝑖)𝑖∈𝐼 be a family of open sets. If 𝑥 ∈ ⋃𝑖∈𝐼 𝑈𝑖, then there exists
𝑖 ∈ 𝐼 such that 𝑥 ∈ 𝑈𝑖. Consequently, there exists 𝜀 > 0 such that 𝐵𝜀(𝑥) ⊆
𝑈𝑖 ⊆ ⋃𝑖∈𝐼 𝑈𝑖, so open sets are stable under unions.

As for intersections, let 𝑥 ∈ ⋂𝑖∈𝐼 𝑈𝑖. For each 𝑖, let 𝜀𝑖 be such that 𝐵𝜀𝑖
(𝑥) ⊆ 𝑈𝑖.

If 𝐼 is finite, then the 𝜀𝑖 have a minimum 𝜀, and the ball of centre 𝑥 and radius
𝜀 is contained in all of the 𝐵𝜀𝑖

(𝑥), hence in the intersection of the 𝑈𝑖. Therefore,
open sets are closed under finite intersections.

Definition 2.2.4. Let 𝑑 and 𝑑′ be two metrics on a set 𝑋. We say that 𝑑 and
𝑑′ are equivalent for all points 𝑥 ∈ 𝑋, and all 𝑟 > 0 there exist 𝑟′, 𝑟″ > 0 such
that 𝐵𝑑′

𝑟′ (𝑝) ⊆ 𝐵𝑑
𝑟 (𝑝) and 𝐵𝑑

𝑟″(𝑝) ⊆ 𝐵𝑑′
𝑟 (𝑝).

Lemma 2.2.5. Two metrics 𝑑 and 𝑑′ are equivalent if and only if they determine
the same collection of open sets.

Proof. Let 𝑑 and 𝑑′ be equivalent metrics. Since the definition of equivalence
of metrics is symmetric, it is enough to show that all the open sets with respect
to the metric 𝑑 are also open with respect to the metric 𝑑′.

So let 𝑈 be open with respect to 𝑑. For 𝑥 ∈ 𝑈 , let 𝜀 > 0 be such that 𝐵𝑑
𝜀 (𝑥) ⊆ 𝑈 .

By the definition of equivalence, there exists 𝜀′ > 0 such that 𝐵𝑑′
𝜀′ (𝑥) ⊆ 𝐵𝑑

𝜀 (𝑥),
hence in particular 𝐵𝑑′

𝜀′ (𝑥) ⊆ 𝑈 .

Conversely, suppose 𝑑 and 𝑑′ have the same open sets. Fix 𝑥 ∈ 𝑋 and 𝑟 > 0.
Then 𝐵𝑑

𝑟 (𝑥) is open with respect to 𝑑 by Exercise 1, hence with respect to 𝑑′.
In particular, there exists 𝑟′ > 0 such that 𝐵𝑑′

𝑟′ (𝑥) ⊆ 𝐵𝑑
𝑟 (𝑥). The other half of

the definition of equivalence can be proved similarly. It follows that 𝑑 and 𝑑′

are equivalent.

Exercise 2. Let 𝑝 be a real number with 𝑝 ≥ 1. Define the distance 𝑑𝑝 on ℝ𝑛

by:
𝑑𝑝(𝑥, 𝑦) ∶= ‖𝑥 − 𝑦‖𝑝,
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where ‖ − ‖𝑝 is the 𝑝-norm, defined by:

‖𝑥‖𝑝 = (
𝑛

∑
𝑖=1

|𝑥𝑖|𝑝)
1/𝑝

.

This definition can be extended to 𝑝 = ∞, by setting:

‖𝑥‖∞ = max
𝑖=1,…,𝑛

|𝑥𝑖|.

Show that all the distances 𝑑𝑝 are pairwise equivalent. [Hint: compare ‖𝑥‖𝑝 and
‖𝑥‖∞]

2.3 Continuous functions on metric spaces
Definition 2.3.1. Let 𝑋 and 𝑌 be metric spaces, and 𝑓 ∶ 𝑋 → 𝑌 be a function
between them. If 𝑥 ∈ 𝑋, we say that 𝑓 is continuous at 𝑥 if for all 𝜀 > 0 there
exists 𝛿 > 0 such that 𝑓(𝐵𝛿(𝑥)) ⊆ 𝐵𝜀(𝑓(𝑥)). We say that 𝑓 is continuous if it is
continuous at every point of 𝑋.

Note that a continuous function 𝑓 is not necessarily distance-preserving, i.e. it
is not necessarily the case that 𝑑(𝑓(𝑥), 𝑓(𝑦)) = 𝑑(𝑥, 𝑦). However, the converse
holds, and it is an immediate consequence of the following exercise.

Exercise 3. Let 𝑓 ∶ 𝑋 → 𝑌 be a function satisfying

𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑑(𝑥, 𝑦).

Prove that 𝑓 is continuous.

Exercise 4. Let 𝑝 ∈ 𝑋 be a point of a metric space 𝑋. Show that the function
𝑓 ∶ 𝑋 → ℝ given by 𝑓(𝑥) = 𝑑(𝑥, 𝑝) is continuous.

Definition 2.3.1 generalises the well-known notion of continuity of real and com-
plex functions to metric spaces. A key observation is that continuity of functions
depends only on the equivalence class of the metric, since it can in fact be char-
acterised by the open sets only.

Proposition 2.3.2. A function 𝑓 ∶ 𝑋 → 𝑌 between metric spaces is continuous
if and only if for all open subsets 𝑈 of 𝑌 , the inverse image 𝑓−1(𝑈) is an open
subset of 𝑋.

Proof. Let 𝑓 be continuous at every point of 𝑋, and 𝑈 an open subset of 𝑌 .
Let 𝑥 ∈ 𝑓−1(𝑈). Since 𝑓(𝑥) ∈ 𝑈 , there exists 𝜀 > 0 such that 𝐵𝜀(𝑓(𝑥)) ⊆ 𝑈 ,
hence by continuity there exists 𝛿 > 0 with 𝑓(𝐵𝛿(𝑥)) ⊆ 𝐵𝜀(𝑓(𝑥)). It follows
that 𝐵𝛿(𝑥) ⊆ 𝑓−1(𝑈), hence 𝑓−1(𝑈) is open.

Conversely, suppose that inverse images of open sets along 𝑓 are open, fix a
point 𝑥 ∈ 𝑋, and let 𝜀 > 0. Since 𝑓−1(𝐵𝜀(𝑓(𝑥))) is an open subset of 𝑋, there
exists 𝛿 > 0 such that 𝐵𝛿(𝑥) ⊆ 𝑓−1(𝐵𝜀(𝑓(𝑥)), and this is exactly equivalent to
the definition of continuity at 𝑥.
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3 Topological spaces
We have seen that one can use metric spaces as a setting for studying con-
tinuous transformations, but that metric spaces are equipped with “too much
information”, since continuity of functions does not see the difference between
equivalent metrics, and is only sensitive to the open sets of a space.

This suggests that the appropriate setting for studying continuous functions is
some kind of space where the open sets are the primary notion. It turns out
that a very direct approach to this idea works very well. Namely, we can study
sets equipped with a collection of subsets satisfying some of the properties that
open sets of a metric space satisfy. This is captured by the following definition:

Definition 3.0.1. A topology on a set 𝑋 is a collection 𝜏 ⊆ ℙ(𝑋) of subsets of
𝑋 that is stable under finite intersections and arbitrary unions. A set equipped
with a topology is called a topological space.

Note that since empty intersections and empty unions are also included, a topol-
ogy is required, in particular, to contain the whole set 𝑋 and the empty set.
We will sometimes refer to a topological space simply as a “space”.

The following is a restatement of Lemma 2.2.3:

Corollary 3.0.2. The open sets of a metric space form a topology.

Therefore, if 𝑋 is a metric space, we will implicitly regard it as a topological
space with the topology provided by its open sets. We say that this topology
is induced from the metric. As observed before, equivalent metrics on a space
determine the same open sets, which means that they induce the same topology.

By analogy with the case of metric spaces, we will call a subset of a topological
set 𝑋 open if it belongs to the chosen topology on 𝑋.

3.1 Basic examples
It follows from Corollary 3.0.2 that any metric space provides an example of
topological space, hence in particular ℝ𝑛 and ℂ𝑛 can canonically be regarded as
topological spaces using the topology induced from the Euclidean metric.

There are many situations, however, where a topology can be obtained from a
metric, but it more convenient and less ad hoc to define it directly in terms of
open sets, rather than defining a metric first. Furthermore, certain topologies
are just not induced from a metric, as we will see later.

To define a topology on a set 𝑋, we simply declare some of its subsets to be open.
Provided that open sets satisfy the conditions of Definition 3.0.1, i.e. that they
are stable under finite intersections and binary unions, such a choice uniquely
determines a topology on 𝑋. We now introduce two canonical topologies that
can be defined for any set.
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Definition 3.1.1. Let 𝑋 be a set. The chaotic topology on 𝑋 (sometimes also
called indiscrete or codiscrete) is defined by declaring only the empty set and
𝑋 to be open. Conversely, the discrete topology on 𝑋 is defined by declaring
every subset of 𝑋 to be open.

It is clear that the chaotic and discrete topologies on 𝑋 are respectively the
minimum and maximum among the collection of all topologies on 𝑋, ordered
by inclusion. We will sometimes use the notation Δ𝑋 (resp. ∇𝑋) to denote
the topological space obtained by equipping 𝑋 with the discrete (resp. chaotic)
topology.

Exercise 5. Show that the discrete metric on a set 𝑋 defined in section 2 (i.e.
𝑑(𝑥, 𝑦) = 1 for 𝑥 ≠ 𝑦) induces the discrete topology.

Exercise 6. Show that if the chaotic topology on 𝑋 is induced by a metric, then
𝑋 has at most one point.

Let 2 denote a set with two elements, namely 2 = {0, 1}. We have already
seen that there are at least two topologies on 2, the discrete and chaotic ones.
However, there is another interesting topology on this set, namely the one where
we declare {1} to be open, but not {0} (and, of course, also the one obtained
by reversing the roles of 0 and 1). The set 2, equipped with this topology, is
called the Sierpinski space, and denoted 𝕊.

3.2 Continuous functions
Inspired by Proposition 2.3.2, we can now give a definition of continuous function
that works at the level of generality of topological spaces.

Definition 3.2.1. Let 𝑋 and 𝑌 be topological space, and 𝑓 ∶ 𝑋 → 𝑌 a function.
We say that 𝑓 is continuous if for all open subsets 𝑈 of 𝑌 , the inverse image
𝑓−1(𝑈) is an open set of 𝑋.

Proposition 3.2.2. The identity function on a topological space 𝑋 is continu-
ous. If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are continuous functions between topological
spaces, then 𝑔 ∘ 𝑓 is continuous.

Proof. If 𝑈 is an open subset of 𝑋, then id−1(𝑈) = 𝑈 , hence it is open.

As for composition, just observe that (𝑔 ∘ 𝑓)−1(𝑈) = 𝑓−1(𝑔−1(𝑈)). Now, if 𝑈
is open, so is 𝑉 ∶= 𝑔−1(𝑈) by continuity of 𝑔, and therefore also 𝑓−1(𝑉 ) by
continuity of 𝑓 .

Continuous functions play the role of the “morphisms” of topological spaces,
just like group homomorphisms for groups, linear functions for vector spaces,
and so on. Technically, Proposition 3.2.2 can be summarised by saying that
topological spaces and continuous functions form a category.

Just like in groups and vector spaces, topological spaces come with a notion of
isomorphism, which is more specifically called homeomorphism:

8



Definition 3.2.3. A homeomorphism between topological spaces 𝑋 and 𝑌 is
a continuous function 𝑓 ∶ 𝑋 → 𝑌 such that there exists a continuous function
𝑔 ∶ 𝑌 → 𝑋 satisfying 𝑔 ∘ 𝑓 = id and 𝑓 ∘ 𝑔 = id. We say that 𝑋 and 𝑌 are
homeomorphic if there exists a homeomorphism between them.

Homeomorphic spaces are completely indistinguishable from the topological
point of view. This is because every property of topological spaces can be
expressed in terms of open sets, and therefore can be transported along a home-
omorphism. We will write 𝑋 ≅ 𝑌 to mean that 𝑋 and 𝑌 are homeomorphic.

Note that a bijective continuous function is not necessarily a homeomorphism.
A trivial example is the identity function Δ2 → 𝕊 (recall that 𝕊 denotes the
Sierpinski space, i.e. the set 2, with the topology where {1} is open, and {0} is
not). We will see more “geometrical” examples later (Exercise 56).

Exercise 7. Let 𝑋 be a set. Recall that Δ𝑋 and ∇𝑋 denote respectively the
discrete and chaotic spaces with underlying set 𝑋. Prove that the identity
function Δ𝑋 → ∇𝑋 is continuous and bijective, but it is a homeomorphism if
and only if 𝑋 contains at most one point.

Definition 3.2.4. A function 𝑓 ∶ 𝑋 → 𝑌 between topological space is said to
be open if it maps open subsets of 𝑋 to open subsets of 𝑌 .

Exercise 8. Give an example of a continuous function that is not open. [Hint:
try a constant function]

Proposition 3.2.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous and open bijection between
topological spaces. Then 𝑓 is a homeomorphism.

Proof. Let 𝑔 ∶ 𝑌 → 𝑋 be the inverse of 𝑓 . We only need to show that 𝑔 is
continuous. If 𝑈 ⊆ 𝑋 is an open set, then 𝑔−1(𝑈) = 𝑓(𝑈), hence it is open in
𝑌 .

Spaces with the discrete and chaotic topologies enjoy certain so-called universal
properties, which can be stated in terms of continuous functions respectively to
and from them.

Proposition 3.2.6. If 𝑌 is a topological space with the chaotic topology and
𝑋 is any topological space, then all functions 𝑋 → 𝑌 are continuous. Dually,
if 𝑋 has the discrete topology and 𝑌 is any topological space, then all functions
𝑋 → 𝑌 are continuous.

Proof. A function 𝑓 ∶ 𝑋 → 𝑌 is continuous if and only if the inverse images
along 𝑓 of the open sets of 𝑌 are open subsets of 𝑋. But if the topology on 𝑌
is chaotic, the open sets of 𝑌 are only ∅ and 𝑌 , and their inverse images are ∅
and 𝑋, which are open in 𝑋.

If instead 𝑋 is discrete, then every subset of 𝑋 is open, hence the condition of
the definition of continuity for a function 𝑓 ∶ 𝑋 → 𝑌 holds trivially.
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The Sierpinski space 𝕊 also possesses a kind of universal property, as the fol-
lowing exercise shows.

Exercise 9. Show that the open sets of a topological space 𝑋 are in bijective
correspondence with continuous functions 𝑋 → 𝕊.

3.3 Closed sets
Definition 3.3.1. A subset 𝐶 of a topological space 𝑋 is said to be closed if
its complement 𝑋 ∖ 𝐶 is open.

Note that the notion of closed is in the appropriate sense dual to the notion of
open, but it is not opposite. In particular, a set can be both open and closed
(for instance, the whole space 𝑋 is both open and closed, as well as the empty
subset), or neither open nor closed.

Exercise 10. Show that a half-open interval [𝑎, 𝑏[, with 𝑎 < 𝑏, is neither open
nor closed in ℝ.

Closed sets satisfy properties which are dual to those satisfied by open sets. Here
by dual we mean that they are formally obtained by replacing intersections with
unions and vice versa. More explicitly:

Proposition 3.3.2. Closed sets in a topological space are stable under finite
unions and arbitrary intersections.

Proof. The complement of a finite union of closed sets is equal to the inter-
section of the complements, which are open. Since open sets are stable under
finite intersections, the intersection is open, which means that its complement
is closed. The proof of stability under intersections is completely analogous.

Since closed sets determine and are completely determined by open sets, they
contain exactly the same information as open sets. In particular, the notion of
topology could have been defined by axiomatising the properties of closed sets,
and then open sets could have been defined accordingly as those sets whose
complement is closed. This is summarised by the following.

Proposition 3.3.3. Let 𝜒 be a collection of subsets of a set 𝑋 that is stable
under finite unions and arbitrary intersections. Then there exists a unique
topology 𝜏 on 𝑋 such that 𝜒 is the collection of closed sets of 𝑋.

We can use Proposition 3.3.3 whenever it happens to be more natural to define
a topology in terms of closed sets. A common example is the following.

Definition 3.3.4. Let 𝑋 be any set. The cofinite topology on 𝑋 is defined by
declaring a set to be closed if it is either finite, or the whole space 𝑋.

Since finite sets are clearly stable under finite unions and non-empty inter-
sections, Definition 3.3.4 does indeed define a topology by virtue of Proposi-
tion 3.3.3. It is called cofinite because the open sets are the complements of
finite sets (plus of course the empty set). In the special case where 𝑋 = 𝑘
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is a field (or, more generally, a commutative ring), the cofinite topology on 𝑘
coincides with the so-called Zariski topology of the affine line, used in algebraic
geometry.

Exercise 11. Prove that the cofinite topology on 𝑋 coincides with the discrete
topology if and only if 𝑋 is finite.

Many concepts defined in terms of open sets admit characterisations in terms
of closed sets. For example:

Proposition 3.3.5. A function 𝑓 ∶ 𝑋 → 𝑌 is continuous if and only if the
inverse image along 𝑓 of any closed subset of 𝑌 is a closed subset of 𝑋.

Proof. If 𝑓 is continuous, let 𝐶 ⊆ 𝑌 be a closed set. Then 𝑓−1(𝐶) = 𝑋∖𝑓−1(𝑌 ∖
𝐶). Since 𝑌 ∖ 𝐶 is open, it follows that 𝑓−1(𝑌 ∖ 𝐶) is open, hence 𝑓−1(𝐶) is
closed, as required. The other direction is analogous.

Definition 3.3.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a function between topological spaces.
We say that 𝑓 is closed if it maps closed subsets of 𝑋 to closed subsets of 𝑌 .

Exercise 12. Let 𝜋 ∶ ℝ2 → ℝ be the projection onto the 𝑥 axis. Show that 𝜋
is open, but not closed. [Hint: consider the set of points (𝑥, 𝑦) ∈ ℝ2 such that
𝑥𝑦 = 1].

In analogy with Definition 3.2.4, we have the following:

Proposition 3.3.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous closed bijection. Then 𝑓
is a homeomorphism.

Proof. Let 𝑔 ∶ 𝑌 → 𝑋 be the inverse of 𝑓 . If 𝐶 ⊆ 𝑋 is closed, then 𝑔−1(𝐶) =
𝑓(𝐶) is closed too, because 𝑓 is closed. By Proposition 3.3.5, 𝑔 is continuous,
hence 𝑓 is a homeomorphism.

3.4 Interior and closure
Given a subset of a topological space, there is a canonical way to “turn it into
an open set”, which is expressed by the following:

Definition 3.4.1. Let 𝑆 be a subset of a topological space 𝑋. The interior of
𝑆, denoted 𝑆o, is the union of all the open sets contained in 𝑆.

Proposition 3.4.2. Let 𝑆, 𝑇 be subsets of a topological space 𝑋. Then:

(i) 𝑆o ⊆ 𝑆;
(ii) 𝑆o is open;

(iii) 𝑆o is the largest open set contained in 𝑆;
(iv) if 𝑆 ⊆ 𝑇 , then 𝑆o ⊆ 𝑇 o;
(v) 𝑆 is open if and only if 𝑆o = 𝑆;

(vi) (𝑆o)o = 𝑆o.
(vii) (𝑆 ∩ 𝑇 )o = 𝑆o ∩ 𝑇 o.
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Proof. Property (i) is immediate from the definition. Property (ii) follows from
the fact that open sets are stable under union, and 𝑆o is defined as a union of
open sets. It then follows that 𝑆o is an open set contained in 𝑆, and since it is
the union of all of those sets, it must be the largest such, hence we have (iii).

As for (iv), if 𝑆 ⊆ 𝑇 , then it follows from (i) that 𝑆o ⊆ 𝑇 , so 𝑆o is an open set
contained in 𝑇 , hence 𝑆o ⊆ 𝑇 o from property (iii).

Now assume that 𝑆 is open. Then clearly 𝑆 is the largest open set contained in
𝑆, therefore 𝑆o = 𝑆. The converse is obvious since 𝑆o is open. This proves (v).
Also, since 𝑆o is open, property (vi) follows directly from (v).

Finally, to show property (vii), we show the two inclusions. First, from 𝑆∩𝑇 ⊆ 𝑇
and property (iv), we get that (𝑆 ∩ 𝑇 )o ⊆ 𝑇 o, and symmetrically (𝑆 ∩ 𝑇 )o ⊆ 𝑆o,
therefore (𝑆 ∩ 𝑇 )o ⊆ 𝑆o ∩ 𝑇 o. Conversely, since 𝑆o ⊆ 𝑆 and 𝑇 o ⊆ 𝑇 , we have
𝑆o ∩ 𝑇 o ⊆ 𝑆 ∩ 𝑇 , hence by (iii) 𝑆o ∩ 𝑇 o ⊆ (𝑆 ∩ 𝑇 )o.

In particular, property (v) of Proposition 3.4.2 shows that open sets are com-
pletely determined by the operation of taking the interior of a subset of 𝑋. In
fact, it is possible to give an equivalent definition of topological space purely
based on an axiomatisation of the interior operation, as the following proposition
shows.

Proposition 3.4.3. Let 𝑋 be a set equipped with an operation 𝑖 ∶ ℙ(𝑋) → ℙ(𝑋)
satisfying the following axioms:

(i) 𝑖(𝑆) ⊆ 𝑆;
(ii) 𝑖(𝑖(𝑆)) = 𝑖(𝑆);

(iii) 𝑖(𝑋) = 𝑋;
(iv) 𝑖(𝑆 ∩ 𝑇 ) = 𝑖(𝑆) ∩ 𝑖(𝑇 ).

Then there exists a unique topology on 𝑋 such that 𝑖(𝑆) = 𝑆o.

Proof. Uniqueness is clear, since if there is a topology for which 𝑖 is the interior
operator, then it must follow from Proposition 3.4.2 that a set is open if and
only if 𝑖(𝑆) = 𝑆, which uniquely determines the topology.

To show existence, then, we declare a set 𝑆 open if 𝑖(𝑆) = 𝑆, and show the
properties of Definition 3.0.1. Observe first of all that if 𝑆 ⊆ 𝑇 , then 𝑖(𝑆) =
𝑖(𝑆 ∩ 𝑇 ) = 𝑖(𝑆) ∩ 𝑖(𝑇 ), hence 𝑖(𝑆) ⊆ 𝑖(𝑇 ). Now let (𝑆𝑗)𝑗∈𝐽 be a family of open
sets and let 𝑈 be their union. We know from axiom (i) that 𝑖(𝑈) ⊆ 𝑈 . To
show the converse, let 𝑗 be any index in 𝐽 . Since 𝑆𝑗 ⊆ 𝑈 , it follows from the
observation above that 𝑆𝑗 = 𝑖(𝑆𝑗) ⊆ 𝑖(𝑈). Therefore, by taking the union over
𝑗, we get that 𝑈 ⊆ 𝑖(𝑈), as required.

As for stability under finite intersections, it is enough to show that 𝑋 is open,
and that open sets are stable under binary intersections, since all other finite
intersections follow easily by induction. Clearly 𝑋 is open by axiom (iii), so
let 𝑆 and 𝑇 be open sets. Then 𝑖(𝑆 ∩ 𝑇 ) = 𝑖(𝑆) ∩ 𝑖(𝑇 ) = 𝑆 ∩ 𝑇 , which means
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that 𝑆 ∩ 𝑇 is also open, completing the proof that the above choice of open sets
defines a topology on 𝑋.

It remains to show that with this choice of topology, 𝑖(𝑆) = 𝑆o. First of all,
axiom (ii) implies that every set of the form 𝑖(𝑆) is open. In particular, 𝑖(𝑆)
is an open subset of 𝑆. Let 𝑈 be any open subset of 𝑆. From the definition of
open, we get 𝑈 = 𝑖(𝑈) ⊆ 𝑖(𝑆). Therefore, 𝑖(𝑆) is the maximum open subset of
𝑆, which implies that 𝑖(𝑆) = 𝑆o, as required.

Analogous to the interior operation (and dual in an appropriate sense), there is
a closure operation on any topological space.

Definition 3.4.4. Let 𝑆 be a subset of a topological space 𝑋. The closure of
𝑆, denoted 𝑆, is the intersection of all the closed sets containing 𝑆. A subset 𝑆
of 𝑋 is said to be dense if 𝑆 = 𝑋.

Exercise 13. A subset 𝑆 of a topological space 𝑋 is dense if and only if every
non-empty open subset of 𝑋 meets 𝑆.

Exercise 14. Let 𝑆 be a dense subset of a topological space 𝑋, and 𝑓 ∶ 𝑋 → 𝑌
a surjective continuous function. Then 𝑓(𝑆) is dense in 𝑌 .

We leave it to the reader to formulate and prove the results about closure
analogous to Proposition 3.4.2 and Proposition 3.4.3.

The duality between open and closed sets implies a similar relationship between
interior and closure. For example, we have the following result:

Proposition 3.4.5. For any subset 𝑆 of a topological space 𝑋,

𝑋 ∖ 𝑆 = (𝑋 ∖ 𝑆)o.
Proof. Just a direct calculation using the definitions:

𝑋 ∖ 𝑆 = 𝑋 ∖ ⋂
𝐶⊇𝑆

𝐶 = ⋃
𝐶⊇𝑆

𝑋 ∖ 𝐶 = ⋃
𝑈⊆𝑋∖𝑆

𝑈 = (𝑋 ∖ 𝑆)o,

where 𝐶 ranges over closed sets, 𝑈 ranges over open sets, and we have used the
fact that the open sets contained in 𝑋 ∖ 𝑆 are exactly the complements of the
closed sets containing 𝑆.

For any subset 𝑆, we have of course that 𝑆o ⊆ 𝑆, since the former is contained
in 𝑆, and the latter contains 𝑆. This motivates the following definition:

Definition 3.4.6. The boundary of a set 𝑆 is the difference 𝑆 ∖ 𝑆o.

Exercise 15. Prove that the boundary of any set 𝑆 is closed.

Exercise 16. Let 𝑆 be a subset of ℝ. If 𝑆 has a supremum 𝑚, then 𝑚 ∈ 𝜕𝑆.
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3.5 Neighbourhoods and continuity at a point
Continuity can also be defined locally, i.e. around any given point, generalising
the definition of continuity at a point for functions of metric spaces. In order to
do that, we first establish the notion of neighbourhood, which will be of central
importance later.

Definition 3.5.1. Let 𝑥 be a point of a topological space 𝑋. A neighbourhood
of 𝑥 is a subset 𝑁 such that there exists an open set 𝑈 with 𝑥 ∈ 𝑈 and 𝑈 ⊆ 𝑁 .

Proposition 3.5.2. Let 𝑥 be a point of a topological space 𝑋. The following
properties hold:

(i) every neighbourhood of 𝑥 contains 𝑥;
(ii) every open set containing 𝑥 is a neighbourhood of 𝑥;

(iii) if 𝑁 is a neighbourhood of 𝑥, and 𝑁 ⊆ 𝑁 ′, then 𝑁 ′ is a neighbourhood of
𝑥;

(iv) if 𝑁, 𝑁 ′ are neighbourhoods of 𝑥, then so is 𝑁 ∩ 𝑁 ′.

Proof. Properties (i) and (ii) are obvious from the definition. As for (iii), if 𝑁
is a neighbourhood of 𝑥, then 𝑥 ∈ 𝑈 , for some open set 𝑈 contained in 𝑁 . But
then 𝑈 ⊆ 𝑁 ⊆ 𝑁 ′, hence 𝑁 ′ is also a neighbourhood of 𝑥.

Finally, let 𝑁, 𝑁 ′ be neighbourhoods of 𝑥. Let 𝑈, 𝑈 ′ be open sets containing
𝑥, with 𝑈 ⊆ 𝑁 and 𝑈 ′ ⊆ 𝑁 ′. Then 𝑈 ∩ 𝑈 ′ is also open, it contains 𝑥, and
𝑈 ∩ 𝑈 ′ ⊆ 𝑁 ∩ 𝑁 ′, hence 𝑁 ∩ 𝑁 ′ is a neighbourhood of 𝑥.

We will see later that the collection of neighbourhoods of a point is the primary
example of a filter, and this statement is essentially the content of Proposi-
tion 3.5.2.

Similarly to what we have already seen for closed sets, interior and closure,
neighbourhoods contain enough information to reconstruct the whole topology
on a space.

Proposition 3.5.3. A subset 𝑈 of a topological space 𝑋 is open if and only if
it is a neighbourhood of all its points.

Proof. If 𝑈 is open, then it is clearly a neighbourhood of all its points. Con-
versely, suppose that 𝑈 is a neighbourhood of all its points. For all 𝑥 ∈ 𝑈 , let
𝑉𝑥 be an open set containing 𝑥 and such that 𝑉𝑥 ⊆ 𝑈 . Now define:

𝑈 ′ ∶= ⋃
𝑥∈𝑈

𝑉𝑥.

If 𝑥 ∈ 𝑈 , then we know that 𝑥 ∈ 𝑉𝑥, hence in particular 𝑥 ∈ 𝑈 ′, therefore
𝑈 ⊆ 𝑈 ′. On the other hand, 𝑉𝑥 ⊆ 𝑈 for all 𝑥 ∈ 𝑈 , hence by taking the union
we also get 𝑈 ′ ⊆ 𝑈 . It follows that 𝑈 = 𝑈 ′, so 𝑈 is a union of open sets, hence
open.
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Using neighbourhoods, it is possible to formulate a notion of continuity at a
specific point.

Definition 3.5.4. Let 𝑋 and 𝑌 be topological spaces, 𝑓 ∶ 𝑋 → 𝑌 a continuous
function, and 𝑥 ∈ 𝑋 a point. We say that 𝑓 is continuous at 𝑥 if the inverse
image along 𝑓 of any neighbourhood of 𝑓(𝑥) is a neighbourhood of 𝑥.

Exercise 17. Prove that a function 𝑓 ∶ 𝑋 → 𝑌 is continuous at 𝑥 if and only if
for all open neighbourhoods 𝑈 of 𝑓(𝑥), the inverse image through 𝑓 of 𝑈 is a
neighbourhood of 𝑥.

As expected, continuity at a point is the correct local formulation of Defini-
tion 3.2.1.

Proposition 3.5.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a function between topological spaces.
Then 𝑓 is continuous if and only if it is continuous at every point of 𝑥.

Proof. First suppose that 𝑓 is continuous, and let 𝑥 ∈ 𝑋 be any point. By
Exercise 17, it is enough to show that for all open sets 𝑈 containing 𝑓(𝑥), the
inverse image 𝑓−1(𝑈) is a neighbourhood of 𝑥. But 𝑓−1(𝑈) is open by continuity
of 𝑓 , and it clearly contains 𝑥, so we are done.

Conversely, suppose 𝑓 is continuous at every point of 𝑋. Let 𝑈 be any open
subset of 𝑌 . To show that 𝑓−1(𝑈) is open, we prove that it is a neighbourhood of
all its points (Proposition 3.5.3). Let 𝑥 ∈ 𝑓−1(𝑈) be any point. Then 𝑓(𝑥) ∈ 𝑈 ,
which implies that 𝑈 is a neighbourhood of 𝑓(𝑥), and therefore by continuity
at 𝑥 we have that 𝑓−1(𝑈) is a neighbourhood of 𝑥, as required.

The following characterisations of interior and closure in terms of neighbour-
hoods are often useful.

Proposition 3.5.6. Let 𝑆 be a subset of a topological space 𝑋. A point 𝑥 ∈ 𝑋
is in the interior of 𝑆 if and only if 𝑆 is a neighbourhood of 𝑥.

Proof. It is enough to show that 𝑥 ∈ 𝑆o if and only if there is an open neigh-
bourhood of 𝑥 contained in 𝑆, which is just a restatement of the definition of
interior.

Proposition 3.5.7. Let 𝑆 be a subset of a topological space 𝑋. A point 𝑥 ∈ 𝑋
is in the closure of 𝑆 if and only if every neighbourhood of 𝑥 meets 𝑆.

Proof. By negating the equivalence, it is enough to show that 𝑥 ∉ 𝑆 if and only
if there exists a neighbourhood of 𝑥 that does not intersect 𝑆. This follows
immediately from Proposition 3.4.5 and Proposition 3.5.6.
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4 Convergence and bases
4.1 Sequences
In metric spaces, it is possible to give equivalent characterisations of many
topological notions using convergence of sequences. Let us a review the basic
definitions:

Definition 4.1.1. A sequence in a set 𝑋 is simply a function 𝑥 ∶ ℕ → 𝑋.

If 𝑛 ∈ ℕ is a natural number, we will use the notation 𝑥𝑛 to denote the value of
the sequence 𝑥 at the point 𝑛. Often, we will define sequences by writing their
generic element in brackets with the index as a subscript, like so:

(𝑥𝑛)𝑛.

Given a subset 𝐴 ⊆ 𝑋, we will sometimes say that a sequence 𝑥 in 𝑋 is eventually
in 𝐴 if there exists 𝑛0 ∈ ℕ such that 𝑥𝑛 ∈ 𝐴 for all 𝑛 ≥ 𝑛0. Similarly, we will say
that 𝑥 is frequently in 𝐴 if for all 𝑛0 ∈ ℕ there exists 𝑛 ≥ 𝑛0 such 𝑥𝑛 ∈ 𝐴. Note
that 𝑥 is frequently in 𝐴 if and only if it is not eventually in the complement of
𝐴.

Definition 4.1.2. A sequence 𝑥 in a topological space 𝑋 is said to converge to
a point ℓ if for all neighbourhoods 𝑁 of ℓ there exists a natural number 𝑛0 such
that 𝑥𝑛 ∈ 𝑁 for all 𝑛 ≥ 𝑛0. The point ℓ is called a limit of the sequence 𝑥.

In other words, a sequence 𝑥 converges to ℓ if for all neighbourhoods 𝑁 of ℓ, 𝑥
is eventually in 𝑁 .

Exercise 18. Prove that for all points ℓ of a topological space 𝑋, the constant
sequence (ℓ)𝑛 converges to ℓ.

We will write 𝑥 → ℓ to mean that the sequence 𝑥 converges to ℓ. It is clear
that limits of sequences may not exist (take for example the sequence ((−1)𝑛)𝑛
in ℝ). What may be slightly more surprising is that, at the level of generality
of topological spaces, limits of sequences may not be unique, as the following
exercise shows.

Exercise 19. Let 𝑋 be a topological space with the chaotic topology. Then any
sequence in 𝑋 converges to any point of 𝑋.

One fundamental property of convergence of sequences is that it is preserved
by continuous functions between any topological spaces. First note that, if
𝑓 ∶ 𝑋 → 𝑌 is a function, and 𝑥 is a sequence in 𝑋, the composed function 𝑓 ∘ 𝑥
is a sequence in 𝑌 .

Proposition 4.1.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous function between topological
spaces. For all sequences 𝑥 in 𝑋, if 𝑥 → ℓ, then 𝑓 ∘ 𝑥 → 𝑓(ℓ).
Proof. Let 𝑥 be a sequence in 𝑋 converging to ℓ and let 𝑁 be any neighbourhood
of 𝑓(ℓ). By Proposition 3.5.5, we know that 𝑓−1(𝑁) is a neighbourhood of ℓ,
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therefore there exists 𝑛0 ∈ ℕ such that 𝑥𝑛 ∈ 𝑓−1(𝑁) for all 𝑛 ≥ 𝑛0, which
means that 𝑓(𝑥𝑛) ∈ 𝑁 for all 𝑛 ≥ 𝑛0. We have thus shown that 𝑓 ∘ 𝑥 → 𝑓(ℓ),
as required.

In metric spaces, we characterise closed sets as those such that convergent se-
quences in them cannot have a limit outside. More precisely:

Proposition 4.1.4. Let 𝑋 be a metric space. The closure of a subset 𝑆 of 𝑋
is the set of limits of sequences in 𝑆. In particular, a subset 𝐶 of 𝑋 is closed if
and only if for all sequences 𝑥, if 𝑥𝑛 ∈ 𝐶 for all 𝑛, and 𝑥 → ℓ, then ℓ ∈ 𝐶.

Proof. If 𝑥 is a sequence in 𝑆 and 𝑥 → ℓ, then every neighbourhood of ℓ contains
at least one of the 𝑥𝑛 (infinitely many, as a matter of fact), therefore ℓ is in the
closure of 𝑆 by Proposition 3.5.7. Conversely, let ℓ ∈ 𝐶. For all 𝑛 ∈ ℕ, we know
that the open ball 𝐵2−𝑛(ℓ) is a neighbourhood of ℓ, hence there exists a point
𝑥𝑛 ∈ 𝐵2−𝑛(ℓ) ∩ 𝐶. We want to show that the sequence (𝑥𝑛)𝑛 converges to ℓ.
Let 𝑁 be any neighbourhood of ℓ. By definition of the topology induced by a
metric, there must be some 𝜀 > 0 such that 𝐵𝜀(ℓ) ⊆ 𝑁 . If 𝑛0 ∈ ℕ is such that
2−𝑛0 ≤ 𝜀, we get that for all 𝑛 ≥ 𝑛0, 𝐵2−𝑛(ℓ) ⊆ 𝑁 , hence in particular 𝑥𝑛 ∈ 𝑁 ,
as required by the definition of convergence.

The second statement follows immediately.

Exercise 20. Show that one of the directions of Proposition 4.1.4 can be gener-
alised to topological spaces, namely: for any subset 𝑆 of a topological space 𝑋,
if 𝑥 is a sequence in 𝑆 that converges to a point ℓ ∈ 𝑋, then ℓ ∈ 𝑆.

Unfortunately, it is not immediately possible to generalise the other direction
of Proposition 4.1.4 to topological spaces.

To construct a counterexample, let 𝑋 be any set, and declare a subset in 𝑋
closed if it is either countable or the whole space 𝑋 (cf. Definition 3.3.4). Recall
that a set 𝐴 is said to be countable if there exists a surjection ℕ → 𝐴. Since
finite unions and non-empty intersections of countable subsets are countable, it
is clear that this determines a topology on 𝑋 (using Proposition 3.3.3). This
topology is referred to as the cocountable topology on 𝑋, by analogy with the
cofinite topology (Definition 3.3.4).

It turns out that, using convergence of sequences, we cannot distinguish a space
with the cocountable topology from a discrete space:

Proposition 4.1.5. Let 𝑋 be a space with the cocountable topology. Then every
convergent sequence in 𝑋 is eventually constant.

Proof. Let 𝑥 be a sequence, and assume that 𝑥 → ℓ. Let 𝑆 be the image of the
sequence, i.e. the set of points 𝑦 ∈ 𝑋 such that there exists 𝑛 ∈ ℕ with 𝑥𝑛 = 𝑦.
Since ℕ is countable, 𝑆 is countable as well, hence so is 𝑆′ = 𝑆 ∖ {ℓ}. Now,
𝑋 ∖ 𝑆′ is a neighbourhood of ℓ, hence 𝑥 is eventually in the complement 𝑆′,
which implies that 𝑥 is eventually in {ℓ}, i.e. it is eventually constant.
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It then follows from Proposition 4.1.5 that Proposition 4.1.4 cannot be gener-
alised to uncountable spaces with the cocountable topology.

Corollary 4.1.6. Let 𝑋 be an uncountable set (for example the set ℝ of real
numbers) equipped with the cocountable topology, and 𝑥 ∈ 𝑋. Let 𝑆 = 𝑋 ∖ {𝑥}.
Then 𝑥 ∈ 𝑆, but there is no sequence in 𝑆 that converges to 𝑥.

Proof. Since 𝑋 is uncountable, so is 𝑆. Therefore, the only closed set containing
𝑆 is 𝑋 itself, hence 𝑆 = 𝑋, from which the first assertion follows. The second
is an immediate consequence of Proposition 4.1.5.

4.2 Filters
To address the fundamental inability of sequences to correctly capture topolog-
ical properties in the general case, we will now introduce a new, more general,
type of convergence. The objects that will replace sequences are called filters:

Definition 4.2.1. Let 𝑋 be a set. A filter on 𝑋 is a collection ℱ of subsets of
𝑋, satisfying the following properties:

(i) ∅ ∉ ℱ;
(ii) the collection ℱ is stable under finite intersections;
(iii) if 𝐴 ∈ ℱ, and 𝐴 ⊆ 𝐵, then 𝐵 ∈ ℱ.

As in the definition of topology, the requirement of ℱ to be stable under finite
intersections implicitly contains the fact that 𝑋 ∈ ℱ, since the whole set 𝑋 can
be regarded as an empty intersection. In particular, a filter is always non-empty.

Note that some authors omit condition (i), and instead call a filter proper if
(i) is satisfied. Note that (i) is equivalent to requiring that the filter is not the
entire powerset of 𝑋. In these notes, we will not need to make this distinction,
hence we simply assume (i) whenever we speak about filters. Condition (iii) is
often expressed by saying that ℱ is upwards closed.

One way to think about filters is that they give a notion of “largeness” for
subsets of a given set 𝑋. The axioms of Definition 4.2.1 capture properties that
“large” sets ought to satisfy, for any given interpretation of the word “large”.
The connection with sequences is given by the following definition.

Definition 4.2.2. Let 𝑥 be a sequence on a set 𝑋. The filter associated to 𝑥,
denoted Ev(𝑥), is defined to be the collection of subsets 𝐴 of 𝑋 such that 𝑥
eventually belongs to 𝐴.

More explicitly, 𝐴 ∈ Ev(𝑥) if and only if there exists 𝑛0 ∈ ℕ such that 𝑥𝑛 ∈ 𝐴
for all 𝑛 ≥ 𝑛0. Clearly Ev(𝑥) does not contain the empty set, and it is easy to
see that it is indeed stable under finite intersections and upwards closed, hence
Ev(𝑥) is a filter.

The reason why filters can be used instead of sequences is that there is a notion
of convergence for them.
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Definition 4.2.3. Let 𝑋 be a topological space, ℱ a filter on 𝑋, and ℓ ∈ 𝑋
a point. We say that ℱ converges to ℓ, written ℱ → ℓ, if ℱ contains all the
neighbourhoods of ℓ.

The notion of convergence of filters directly generalises that of convergence of
sequence, as the following proposition shows.

Proposition 4.2.4. Let 𝑋 be a topological space, and 𝑥 a sequence in 𝑋. Then
𝑥 converges to ℓ if and only if Ev(𝑥) converges to ℓ.

Proof. By definition of convergence of filters, Ev(𝑥) converges to ℓ if and only if
every neighbourhood of ℓ is in Ev(𝑥), i.e. if and only if for all neighbourhoods
𝑁 of ℓ, 𝑥 eventually belongs to 𝑁 . The latter is simply a restatement of the
definition of convergence of 𝑥 to ℓ.

A useful example of convergent filter that does not arise as the filter associated
to a sequence is given by the neighbourhoods of a point.

Proposition 4.2.5. Let 𝑥 be a point in a topological space 𝑋. The collection
of neighbourhoods of 𝑥 is a filter on 𝑋, called the filter of neighbourhoods of 𝑋,
and denoted 𝒩(𝑥).
Proof. Immediate from Proposition 3.5.2.

Exercise 21. Show that 𝒩(𝑥) converges to 𝑥.

4.3 Topology in terms of filters
As we have seen in Corollary 4.1.6, it is not possible to characterise closed (and
hence open) sets in terms of convergence of sequences. One of the main reasons
why filters are interesting in topology is that this can be remedied by replacing
sequences with filters.

When considering sequences, it is useful sometimes to restrict one’s attention
to sequences whose elements all belong to a given subset. In order to generalise
this idea to filters, we need to be able to regard a filter on a subset as a filter
on the whole set. More generally, we define an operation to transport a filter
along any function.

Definition 4.3.1. Let 𝑓 ∶ 𝑋 → 𝑌 be any function, and ℱ a filter on 𝑋. The
filter 𝑓∗(ℱ) is defined as:

𝑓∗(ℱ) = {𝐵 ∈ 𝑌 | 𝑓−1(𝐵) ∈ ℱ}.

We will refer to 𝑓∗(ℱ) as the image of ℱ along 𝑓 .

The proof that 𝑓∗(ℱ) is indeed a filter is left as an exercise for the reader. As a
special case of Definition 4.3.1, if 𝐴 is a subset of 𝑋, and 𝑖𝐴 ∶ 𝐴 → 𝑋 denotes the
inclusion function, any filter ℱ on the subset 𝐴 determines a filter 𝑖𝐴

∗ (ℱ) on the
whole set 𝑋. A natural question then arises: if 𝒢 is a filter on 𝑋, under which
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conditions is 𝑋 the image of a filter on a subset? The following proposition
gives a partial answer.

Proposition 4.3.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a function, and 𝒢 a filter on 𝑌 . There
exists a filter ℱ on 𝑌 such that 𝑓∗(ℱ) ⊇ 𝒢 if and only if, for all 𝐵 ∈ 𝒢, the
inverse image 𝑓−1(𝐵) is non-empty.

Proof. If 𝑓∗(ℱ) ⊇ 𝒢 for some ℱ, then for all 𝐵 ∈ 𝒢 we have that 𝑓−1(𝐵) ∈ ℱ
by definition of image, hence in particular it is non-empty.

Conversely, let ℱ be defined as the collection of subsets of the form 𝑓−1(𝐵),
where 𝐵 ranges over the elements of 𝒢. The assumption on 𝒢 says that ℱ does
not contain the empty set. It is also clear that ℱ is upwards closed and stable
under finite intersections, so ℱ is a filter. Finally, if 𝐵 ∈ 𝒢, that means that
𝑓−1(𝐵) ∈ ℱ, hence 𝐵 ∈ 𝑓∗(ℱ), therefore 𝑓∗(ℱ) ⊇ 𝒢, as required.

We are now ready to prove the generalisation of Proposition 4.1.4 to topological
spaces, obtained by replacing sequences with filters.

Proposition 4.3.3. Let 𝑋 be a topological space, and 𝑆 a subset of 𝑋. A point
ℓ is in the closure of 𝑆 if and only if there exists a filter ℱ on 𝑆 with 𝑖𝑆

∗ (ℱ) → ℓ.

Proof. By Proposition 3.5.7, ℓ ∈ 𝑆 if and only if every neighbourhood of ℓ meets
𝑆. By Proposition 4.3.2 this is the same as saying that there exists a filter ℱ
on 𝑆 such that 𝑖𝑆

∗ (ℱ) ⊇ 𝒩(ℓ), or in other words that there exists a filter ℱ on
𝑆 such that its image converges to ℓ, as required.

Corollary 4.3.4. A subset 𝐶 of a topological space 𝑋 is closed if and only if
for all filters ℱ on 𝐶, if 𝑖𝐶

∗ (ℱ) → ℓ, then ℓ ∈ 𝐶.

We can establish a similar characterisation for open sets in terms of filters.

Proposition 4.3.5. Let 𝑋 be a topological space, and 𝑆 a subset of 𝑋. A point
ℓ is in the interior of 𝑆 if and only if all the filters that converge to ℓ contain
𝑈 .

Proof. By Proposition 3.5.6, ℓ ∈ 𝑆o if and only if 𝑆 is a neighbourhood of ℓ.
Clearly, a set 𝑁 is a neighbourhood of a point 𝑥 if and only if all filters that
converge to 𝑥 contain 𝑁 . The required equivalence then follows.

Finally, we show how continuity of functions can also be expressed in terms of
convergence of filters.

Lemma 4.3.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a function between topological spaces, and
𝑥 ∈ 𝑋 any point. The function 𝑓 is continuous at 𝑥 if and only if the filter
𝑓∗(𝒩(𝑥)) converges to 𝑓(𝑥).
Proof. By definition, 𝑓 is continuous at 𝑥 if and only if for all 𝑁 ∈ 𝒩(𝑓(𝑥)),
we have that 𝑓−1(𝑁) ∈ 𝒩(𝑥). This condition can be equivalently stated as
𝒩(𝑓(𝑥)) ⊆ 𝑓∗(𝒩(𝑥)), which is exactly the statement that 𝑓∗(𝒩(𝑥)) converges
to 𝑓(𝑥).
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Corollary 4.3.7. A function 𝑓 ∶ 𝑋 → 𝑌 between topological spaces is continu-
ous if and only if it preserves converges of filters, i.e. for all filters ℱ on 𝑋, if
ℱ converges to some point 𝑥, then 𝑓∗(ℱ) converges to 𝑓(𝑥).
Proof. By Proposition 3.5.5, 𝑓 is continuous if and only if it is continuous at
every point, which by Lemma 4.3.6 is equivalent to preserving convergence of
filters at every point.

4.4 The set of topologies as a lattice
Definition 4.4.1. Let 𝜏 and 𝜌 be topologies on a set 𝑋. We say that 𝜏 is
coarser than 𝜌 if 𝜏 ⊆ 𝜌 as subsets of the powerset of 𝑋. Equivalently, we can
say that 𝜌 is finer than 𝜏 in this case.

Definition 4.4.1 introduces some suggestive terminology for the natural partial
order on topologies. Saying that 𝜏 is coarser than 𝜌 means that fewer sets
are open according to 𝜏 than according to 𝜌. The fact that this is a partial
order order follows immediately from the fact that it is just the restriction on
topologies of the usual order relation for subsets of the powerset of 𝑋.

Therefore, we will henceforth regard the set of topologies on a set 𝑋 as a partially
ordered set (or poset, for short). Note that the chaotic (resp. discrete) topology
on 𝑋 is the minimum (resp. maximum) element of this poset.

Proposition 4.4.2. The poset of topologies on 𝑋 is a complete lattice, i.e. every
set of topologies on 𝑋 has a least upper bound and a greatest lower bound.

Proof. We first show that every set of topologies has a greatest lower bound.
Let 𝑆 be a set of topologies on 𝑋, and define 𝜏 to be their intersection. In other
words, a subset 𝐴 of 𝑋 belongs to 𝜏 if and only if it belongs to all the topologies
in 𝑆. It is then a simple verification to deduce the stability properties of 𝜏 from
those of the topologies of 𝑆. Therefore, 𝜏 is a topology on 𝑋, and it is clearly
coarser than every topology in 𝑆. To show that 𝜏 is the greatest lower bound of
𝑆, let 𝜌 be any topology coarser than every element of 𝑆. If 𝐴 is an element of
𝜌, than by the assumption on 𝜌 we get that 𝐴 belongs to every topology of 𝑆,
which implies that it belongs to 𝜏 . We have then proved that 𝜌 is coarser than
𝜏 , as required.

It is a general fact that a poset that has greatest lower bounds of arbitrary
subsets has also least upper bounds. We will prove it here for the special case
of the posets of topologies, but the proof is directly generalisable.

Let 𝑆 be an arbitrary set of topologies on 𝑋. Let 𝑆′ be the set of topologies
that are finer than every topology in 𝑆 (in other words, 𝑆′ is the set of upper
bounds of 𝑆). By the previous part of the proof, 𝑆′ has a greatest lower bound
𝜏 . To show that 𝜏 is a least upper bound for 𝑆, it is enough to show that it
is an upper bound, because it follows immediately from its definition that it is
coarser than every upper bound. So let 𝜌 be a topology in 𝑆, and let us show
that 𝜏 is finer than 𝜌. Since 𝜏 is the greatest lower bound of 𝑆′, it is enough to
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show that 𝜌 is also a lower bound of 𝑆′. But if 𝜎 is a topology in 𝑆′, then by
definition of 𝑆′ we have that 𝜎 is finer than 𝜌. That concludes the proof.

Using the terminology of Definition 4.4.1, we can say that the least upper bound
of a set 𝑆 of topologies is the coarsest topology which is finer than every topology
in 𝑆. Dually, the greatest lower bound of 𝑆 is the finest topology that is coarser
than every topology in 𝑆.

Note that, although greatest lower bounds of topologies can simply be computed
by intersection (just like in the containing poset of subsets of the powerset of
𝑋), least upper bounds are not just unions. The simplest counterexample is the
chaotic topology, which can be regarded as the least upper bound of the empty
set of topologies, and which is not simply the empty set.

Exercise 22. Find two topologies on a set 𝑋 such that their union is not a
topology.

4.5 Bases and subbases of topologies
We can make use of the order structure on the set of topologies to generate
topologies from arbitrary collections of subsets.

Definition 4.5.1. Let 𝒜 be any subset of the powerset of 𝑋, and let 𝜏 be a
topology on 𝑋. We say that 𝜏 is generated by 𝒜 if it is the coarsest topology
containing 𝒜.

Exercise 23. Prove that the chaotic topology on 𝑋 is generated by 𝒜 = ∅, while
the discrete topology is generated by ℬ = {{𝑥} | 𝑥 ∈ 𝑋}.

It turns out that every collection of subsets generates a topology, and it is
possible to give an explicit description of it.

Proposition 4.5.2. Let 𝒜 be a subset of the powerset of 𝑋. Then the topology
generated by 𝒜 exists and it consists exactly of unions of finite intersections of
elements of 𝒜.

Proof. Let 𝜏 be the set of unions of finite intersections of elements of 𝒜. It is
clear that 𝜏 is stable under unions. To show that 𝜏 is a topology, it is then
enough to show that it is closed under finite intersections. Let 𝑈𝑖 be a family
of elements of 𝜏 , with 𝑖 = 1, … , 𝑚. For all such 𝑖, we can write:

𝑈𝑖 = ⋃
𝑗∈𝐽𝑖

𝑛𝑖𝑗

⋂
𝑘=1

𝐴𝑖𝑗𝑘,

for some sets 𝐽𝑖, natural numbers 𝑛𝑖𝑗 and elements 𝐴𝑖𝑗𝑘 of 𝒜. Then, by dis-
tributivity of intersections across unions, we get:

𝑚
⋂
𝑖=1

𝑈𝑖 = ⋃
𝑡∈∏𝑚

𝑖=1 𝐽𝑖

𝑚
⋂
𝑖=1

𝑛𝑖,𝑡𝑖

⋂
𝑘=1

𝐴𝑖,𝑡𝑖,𝑘,
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which is also a union of finite intersections of elements of 𝒜.

Therefore, 𝜏 is a topology that contains 𝒜. To show that it is the coarsest
such, let 𝜌 be any topology that contains 𝒜. Since 𝜌 must be stable under finite
intersections, 𝜌 contains in particular all finite intersections of elements of 𝒜.
Furthermore, 𝜌 is also stable under unions, hence it contains all unions of finite
intersections of elements of 𝒜, i.e. it contains 𝜏 , and we are done.

If 𝜏 is the topology generated by a collection 𝒜, we say that 𝒜 is a subbase of
𝜏 . If 𝒜 satisfies the condition that every finite intersection of elements of 𝒜 is a
union of elements of 𝒜, then it follows from Proposition 4.5.2 that the topology
𝜏 generated by 𝒜 consists simply of unions of elements of 𝒜. In that case, we
say that 𝒜 is a base for the topology 𝜏 . It is clear that if 𝒜 is stable under finite
intersections, then in particular it is a base for the topology it generates.

Exercise 24. Show that the least upper bound of a set of topologies is the
topology generated by their union.

Bases and subbases are useful, because they allow us to check continuity more
easily, as the following proposition shows.

Proposition 4.5.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a function between topological spaces,
and let 𝒜 be a subbase for the topology on 𝑌 . Then 𝑓 is continuous if and only
if for all 𝑈 ∈ 𝒜, 𝑓−1(𝑈) is open in 𝑋.

Proof. If 𝑓 is continuous, then clearly 𝑓−1(𝑈) is open for all 𝑈 ∈ 𝒜, since such
subsets 𝑈 are open in 𝑌 . Conversely, suppose that the inverse images along 𝑓
of elements of 𝒜 are open in 𝑋, let 𝜏 be the topology on 𝑌 , and let 𝜌 be the
collection of subsets 𝑆 of 𝑌 such that 𝑓−1(𝑆) is open in 𝑋. Then by assumption
𝜌 contains 𝒜, and it is easy to see that 𝜌 is a topology. It follows that 𝜏 ⊆ 𝜌,
hence 𝑓 is continuous.

We now define initial and final topologies, which will be used several times for
constructing topological spaces in section 5.

Definition 4.5.4. Let 𝑋 be a set, and 𝑓𝑖 ∶ 𝑋 → 𝑌𝑖 a collection of functions
into topological spaces 𝑌𝑖, where 𝑖 ranges over an arbitrary set 𝐼 . The initial
topology on 𝑋 induced by the 𝑓𝑖 is the coarsest topology that makes all the 𝑓𝑖
continuous.

Definition 4.5.5. Let 𝑌 be a set, and 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌 a collection of functions
from topological spaces 𝑋𝑖, where 𝑖 ranges over an arbitrary set 𝐼 . The final
topology on 𝑌 induced by the 𝑓𝑖 is the finest topology that makes all the 𝑓𝑖
continuous.

A priori, initial and final topologies might not exist, since not every collection of
topologies admits a coarsest and a finest one. However, their existence follows
from the following characterisations.
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Proposition 4.5.6. With the notation of Definition 4.5.4, the initial topology
induced by the 𝑓𝑖 is the topology generated by subsets of the form 𝑓−1

𝑖 (𝑈), where
𝑈 ranges over all the open sets of 𝑌𝑖.

Proof. If 𝜏 denotes the topology generated by the 𝑓−1
𝑖 (𝑈), then clearly 𝜏 makes

all the 𝑓𝑖 continuous. Furthermore, any topology 𝜌 that makes 𝑓𝑖 continuous for
all 𝑖 ∈ 𝐼 must contain those subsets, hence it must be finer than 𝜏 . It follows
that 𝜏 is the coarsest topology making the 𝑓𝑖 continuous.

Proposition 4.5.7. With the notation of Definition 4.5.5, the final topology
induced by the 𝑓𝑖 consists exactly of those subsets 𝑈 such that 𝑓−1

𝑖 (𝑈) is open
for all 𝑖 ∈ 𝐼.

Proof. Let 𝜏𝑖 denote the collection of subsets 𝑈 of 𝑌 such that 𝑓−1
𝑖 (𝑈) is open

in 𝑋𝑖. It is easy to see that 𝜏𝑖 is a topology and that 𝑓𝑖 is continuous with
respect to 𝜏𝑖. Therefore, the greatest lower bound of all the 𝜏𝑖 makes all of
the 𝑓𝑖 continuous, and is the finest such by construction. Since greatest lower
bounds are given by intersections, 𝜏 contains exactly those subsets 𝑈 such that
𝑓−1

𝑖 (𝑈) is open for all 𝑖 ∈ 𝐼 , as claimed.

Corollary 4.5.8. Let 𝑌 be equipped with the final topology induced by the 𝑓𝑖.
Then a set 𝐶 ⊆ 𝑌 is closed if and only if 𝑓−1

𝑖 (𝐶) is closed for all 𝑖 ∈ 𝐼.

Proof. Immediate, because inverse images preserve complements.

One reason why initial and final topologies are interesting is that they enjoy the
following universal properties.

Proposition 4.5.9. With the notation of Definition 4.5.4, let 𝑍 be a topological
space, and 𝑔 ∶ 𝑍 → 𝑋 a function. Then 𝑔 is continuous with respect to the initial
topology on 𝑋 induced by the 𝑓𝑖 if and only if for all 𝑖 ∈ 𝐼, the function 𝑓𝑖 ∘ 𝑔
is continuous.

Proof. By Proposition 4.5.3 and Proposition 4.5.6, 𝑔 is continuous if and only
if 𝑔−1(𝑓−1

𝑖 (𝑈)) is open in 𝑍 for all 𝑖 ∈ 𝐼 and 𝑈 open in 𝑌𝑖. Since 𝑔−1 ∘ 𝑓−1
𝑖 =

(𝑓𝑖 ∘ 𝑔)−1, the latter condition is equivalent to 𝑓𝑖 ∘ 𝑔 being continuous for all
𝑖 ∈ 𝐼 .

Proposition 4.5.10. With the notation of Definition 4.5.5, let 𝑍 be a topolog-
ical space, and 𝑔 ∶ 𝑌 → 𝑍 a function. Then 𝑔 is continuous with respect to the
final topology on 𝑌 induced by the 𝑓𝑖 if and only if for all 𝑖 ∈ 𝐼, the function
𝑔 ∘ 𝑓𝑖 is continuous.

Proof. By Proposition 4.5.7, 𝑔 is continuous if and only if 𝑓−1
𝑖 (𝑔−1(𝑈)) is con-

tinuous for all 𝑖 ∈ 𝐼 and all 𝑈 open in 𝑍. Now, 𝑓−1
𝑖 ∘ 𝑔−1 = (𝑔 ∘ 𝑓𝑖)−1, hence the

latter condition is equivalent to all the functions 𝑔 ∘ 𝑓𝑖 being continuous.

Exercise 25. Show that the chaotic and discrete topologies are respectively the
initial and final topologies induced by the empty family of functions.
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Exercise 26. Let 𝑓 ∶ 𝑋 → 𝑌 a continuous open (resp. closed) surjection between
topological spaces. Show that 𝑌 has the final topology induced by the single
map 𝑓 .

4.6 Generating filters
Definition 4.6.1. Let 𝒜 ⊆ ℙ(𝑋) be a collection of subsets of a set 𝑋. We say
that 𝒜 has the finite intersection property if all finite subcollections of 𝒜 have
non-empty intersection.

Proposition 4.6.2. Let 𝒜 ⊆ ℙ(𝑋) be a collection of subsets of a set 𝑋. Then
𝒜 has the finite intersection property if and only if 𝒜 is contained in a filter.

Proof. It is clear that filters have the finite intersection property, so if 𝒜 ⊆ ℱ,
where ℱ is a filter, it follows that 𝒜 also has the finite intersection property.

Conversely, let 𝒜 have the finite intersection property. Define ℱ to be the
collection of all subsets 𝑆 of 𝑋 such that there exists a finite subcollection
𝒜0 ⊆ 𝒜 with ⋂ 𝒜0 ⊆ 𝑆. It is clear that ℱ is stable under finite intersections
and upwards closed. If ∅ ∈ ℱ, then there must be a finite subcollection of 𝒜
with empty intersection, which contradicts the assumption. Therefore, ℱ is a
filter that contains 𝒜.

Proposition 4.6.3. The collection of filters is stable under non-empty inter-
sections.

Proof. Let (ℱ𝑖)𝑖∈𝐼 be a family of filters, with 𝐼 ≠ ∅, and let 𝒢 = ⋂𝑖∈𝐼 ℱ𝑖. It is
clear that 𝒢 is upwards closed and stable under finite intersections, since all the
ℱ𝑖 are filters by assumption. If ∅ ∈ 𝒢, then ∅ ∈ ℱ𝑖 for all 𝑖 ∈ 𝐼 , which, since
𝐼 is non-empty, implies that there exists some 𝑖 ∈ 𝐼 with ∅ ∈ ℱ𝑖, contradicting
the fact that ℱ𝑖 is a filter.

Note that the assumption of non-emptiness in Proposition 4.6.3 is necessary,
since the empty intersection of filters is the collection of all subsets, which is
not a filter.

Proposition 4.6.4. Let 𝒜 be a collection of subsets of a set 𝑋 with the finite
intersection property. Then there exists a minimum filter containing 𝒜.

Proof. By Proposition 4.6.2, there exists at least a filter containing 𝒜. There-
fore, the intersection ℱ of all filters containing 𝒜 is a filter by Proposition 4.6.3,
and it is clear that ℱ is the minimum such filter.

We will say that ℱ is generated by 𝒜 if ℱ is the minimum filter containing 𝒜.

Let us now turn our attention again to filters in a topological spaces.

Proposition 4.6.5. Let ℱ be a filter on a topological space 𝑋, and ℓ ∈ 𝑋 a
point. Then ℱ is contained in a filter that converges to ℓ if and only if, for all
𝐴 ∈ ℱ and all neighbourhoods 𝑈 of ℓ, we have that 𝐴 ∩ 𝑈 ≠ ∅.
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Proof. The condition is necessary, for if ℱ ⊆ 𝒢, and 𝒢 → ℓ, then given 𝐴 ∈ ℱ
and 𝑈 ∈ 𝒩(ℓ), one has 𝐴 ∈ 𝒢 and 𝑈 ∈ 𝒢, hence 𝐴 ∩ 𝑈 ≠ ∅.

Conversely, assume that every element of ℱ meets every neighbourhood of ℓ,
and let 𝒜 = ℱ ∪ 𝒩(ℓ). It follows that 𝒜 has the finite intersection property,
therefore it is contained in a filter 𝒢 by Proposition 4.6.2. Then ℱ ⊆ 𝒢 by
construction, and also 𝒢 → ℓ, since it contains all the neighbourhoods of ℓ.

5 Constructing topological spaces
So far, we have developed some basic theory of topological spaces and contin-
uous functions, but we have not seen many examples. In this section, we will
introduce a number of constructions that will allow us to define new spaces
from existing ones, greatly expanding our ability to exhibit examples. All of
the constructions will be based on initial and final topologies, as defined in
section 4.5.

5.1 Subspaces
As a special - but very important - case of initial topology, let us consider a
subset 𝐴 of a topological space 𝑋, together with its inclusion function 𝑖 ∶ 𝐴 → 𝑋.
The initial topology induced by 𝑖 is called the subspace topology on 𝐴.

Through the subspace topology, we can regard every subset of a topological
space 𝑋 as a topological space in its own right. We will often implicitly regard
any such subset as a topological space, and often we will speak of a subspace of
𝑋 when doing so.

Proposition 5.1.1. Let 𝐴 be a subspace of a topological space 𝑋. A set 𝑆 ⊆ 𝐴
is open (resp. closed) in (the subspace topology of) 𝐴 if and only if there exists
an open (resp. closed) set 𝑆 ⊆ 𝑋 such that 𝑆 ∩ 𝐴 = 𝑆. In particular, if 𝐴 is
itself open in 𝑋, then the open sets of 𝐴 are exactly those open sets of 𝑋 that
are contained in 𝐴.

Proof. Let 𝑖 ∶ 𝐴 → 𝑋 be the inclusion function. If 𝑆 is a subset of 𝑋, then
𝑖−1(𝑆) = 𝑆 ∩ 𝐴. It follows from Proposition 4.5.6 that the initial topology
induced by 𝑖 is generated by the collection 𝜏 of subsets of the form 𝑈 ∩ 𝐴 with
𝑈 ranging over the open subsets of 𝑋. Furthermore, it is immediate to verify
that 𝜏 is a topology, hence it coincides with the topology generated by it.

The second assertion follows immediately from the fact that open sets in 𝑋 are
stable under binary intersections.

It is important to note that the open sets of a subspace are not necessarily open
in the containing topological space. As an extreme example, a subspace 𝐴 ⊆ 𝑋
need not be open when regarded as a subset of 𝑋, but it is clearly always open
as a subset of 𝐴 itself (since topologies always contain the whole space).
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Exercise 27. Let ℚ be the space of rational numbers regarded as a subspace of
ℝ. Describe the open sets of ℚ.

Exercise 28. Let 𝑋 be a metric space, and 𝐴 ⊆ 𝑋 any subset. Regard 𝐴 as a
metric space by equipping it with the restriction of the metric of 𝑋. Show that
the topology on 𝐴 induced by this metric is equal to the subspace topology.

Exercise 29. Prove that any two open (resp. closed) intervals of ℝ are homeo-
morphic. Prove that any open interval of ℝ is homeomorphic to ℝ itself.

It may be sometimes difficult to define a continuous function on a whole space
𝑋, often because it is hard to find a definition that is valid everywhere on 𝑋.
In such cases, it is convenient to be able to “patch” together multiple functions
valid on subspaces.

Definition 5.1.2. A cover of a topological space 𝑋 is a family of subsets of
𝑋 whose union is 𝑋. An open cover (resp. closed cover) is a cover consisting
of open (resp. closed) sets. We say that a cover is finite if the indexing set is
finite.

Proposition 5.1.3. Let (𝑈𝑖)𝑖∈𝐼 be an open cover of a topological space 𝑋, and
let 𝑓𝑖 ∶ 𝑈𝑖 → 𝑌 be continuous functions to a topological space 𝑌 . If for all pair
of indices 𝑖, 𝑗 ∈ 𝐼 we have that 𝑓𝑖|𝑈𝑖 ∩𝑈𝑗 = 𝑓𝑗|𝑈𝑖 ∩𝑈𝑗, then there exists a unique
𝑔 ∶ 𝑋 → 𝑌 such that 𝑔|𝑈𝑖 = 𝑓𝑖 for all 𝑖 ∈ 𝐼.

Proof. It is clear that there exists a unique function 𝑔 ∶ 𝑋 → 𝑌 such that
𝑔|𝑈𝑖 = 𝑓𝑖 for all 𝑖 ∈ 𝐼 , so it remains to show that 𝑔 is continuous. If 𝑉 is an
open set in 𝑌 , then clearly:

𝑔−1(𝑉 ) = ⋃
𝑖∈𝐼

𝑓−1
𝑖 (𝑉 ).

By continuity of 𝑓𝑖, the set 𝑓−1
𝑖 (𝑉 ) is open in 𝑈𝑖. Since 𝑈𝑖 itself is open in 𝑋,

it follows that all the 𝑓−1
𝑖 (𝑉 ) are open in 𝑋, hence so is their union.

Note that Proposition 5.1.3 cannot be generalised to arbitrary covers. An ex-
treme counterexample is a cover consisting of singleton subsets {𝑥} for all 𝑥 ∈ 𝑋.
Since singleton spaces are discrete, a family of functions over this cover defines
an arbitrary function on 𝑋, which clearly cannot be shown to be continuous.

However, we have a limited version of Proposition 5.1.3 for finite closed covers.

Proposition 5.1.4. Let (𝐶𝑖)𝑖∈𝐼 be a finite closed cover of a topological space
𝑋, and let 𝑓𝑖 ∶ 𝐶𝑖 → 𝑌 be continuous functions to a topological space 𝑌 . If for
all pair of indices 𝑖, 𝑗 ∈ 𝐼 we have that 𝑓𝑖|𝐶𝑖 ∩ 𝐶𝑗 = 𝑓𝑗|𝐶𝑖 ∩ 𝐶𝑗, then there exists
a unique 𝑔 ∶ 𝑋 → 𝑌 such that 𝑔|𝐶𝑖 = 𝑓𝑖 for all 𝑖 ∈ 𝐼.

The proof of Proposition 5.1.4 is entirely analogous to that of Proposition 5.1.3,
and is left as an exercise for the reader.
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𝑁 = (0, 1)

(𝑢, 𝜉)

( 𝑢
1−𝜉 , 0)

Figure 1: The stereographic projection

5.1.1 Examples

Many common topological spaces are naturally defined as subspaces. One of
the most important examples are the spheres.

Definition 5.1.5. Let 𝑛 be a natural number. The 𝑛-sphere 𝑆𝑛 is the subspace
of ℝ𝑛+1 consisting of all those points 𝑥 such that ‖𝑥‖ = 1.

Note that 𝑆0 is a discrete space consisting of exactly the two points 1 and −1
in ℝ. More generally, if we regard ℝ𝑛+1 as ℝ𝑛 × ℝ, we can distinguish the two
points 𝑁 = (0, 1) and 𝑆 = (0, −1) on 𝑆𝑛, called respectively north pole and
south pole. The one-dimensional sphere 𝑆1 is referred to as the circle.

Exercise 30. Show that 𝑆𝑛 is a closed subset of ℝ𝑛+1.

One of the reasons why spheres are important in topology is that they can be
thought of as the result of “adding one point” to a Euclidean space. We will
make this intuition completely precise later when discussing compactification,
but for now, we can partially justify it by exhibiting a homeomorphism between
a “punctured” sphere and Euclidean space.

Definition 5.1.6. The stereographic projection 𝜙 ∶ 𝑆𝑛 ∖ {𝑁} → ℝ𝑛 is the map
defined by:

𝜙(𝑢, 𝜉) = 𝑢
1 − 𝜉 ,

where again ℝ𝑛+1 is regarded as ℝ𝑛 × ℝ.

Since 1 − 𝜉 only vanishes at the north pole, 𝜙 is a well-defined continuous
function. The geometric idea behind 𝜙 is very simple (fig. 1): fix a point (𝑢, 𝜉)
on the sphere, and draw a line starting from the north pole (0, 1). Such a line
can be parameterised as (𝑡𝑢, 1 − 𝑡 + 𝑡𝜉), so it will intersect the hyperplane of
points with the last coordinate equal to 0 exactly when 𝑡 = 1/(1 − 𝜉), and the
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intersection point is therefore 𝜙(𝑢, 𝜉) = 𝑡𝑢 = 𝑢/(1 − 𝜉). In other words, we are
projecting the sphere onto a hyperplane from the north pole. This explains why
we cannot include the north pole itself in the projection.

Exercise 31. Show that the stereographic projection 𝜙 ∶ 𝑆𝑛 ∖ {𝑁} → ℝ𝑛 is a
homeomorphism by exhibiting a continuous inverse. [Hint: reverse the projec-
tion by starting with a point on the hyperplane, drawing a line to the north pole,
and intersecting it with the sphere].

Another important family of spaces in topology is given by disks.

Definition 5.1.7. The 𝑛-disk 𝐷𝑛 is the subspace of ℝ𝑛 consisting of all those
points 𝑥 such that ‖𝑥‖ ≤ 1.

Exercise 32. Show that 𝐷𝑛 is a closed subset of ℝ𝑛, and that the boundary of
𝐷𝑛+1 is 𝑆𝑛.

Exercise 33. Let 𝜋 ∶ ℝ𝑛+1 → ℝ𝑛 be the projection function that “forgets” the
last coordinate. Show that 𝜋 restricts to a homeomorphism between the upper
hemisphere 𝑆𝑛

+ (i.e. the subspace of 𝑆𝑛 consisting of the points (𝑢, 𝜉) ∈ ℝ𝑛+1 ×ℝ
where 𝜉 ≥ 0) and the disk 𝐷𝑛.

Exercise 34. Construct a continuous function 𝐷𝑛 → 𝑆𝑛 that maps 𝑆𝑛−1 to a
point and is injective in the interior of 𝐷𝑛.

5.2 Products
Let us recall that, given a family of sets (𝑋𝑖)𝑖∈𝐼 , the product of the family is the
set

𝑃 = ∏
𝑖∈𝐼

𝑋𝑖,

consisting of families 𝑥 = (𝑥𝑖)𝑖∈𝐼 , with 𝑥𝑖 ∈ 𝑋𝑖. If we fix an index 𝑖 ∈ 𝐼 , we can
define a projection function 𝜋𝑖 ∶ 𝑃 → 𝑋𝑗 that maps a family 𝑥 to its value 𝑥𝑗 at
the index 𝑖.
Products of sets satisfy the following universal property, whose proof is left as
an exercise for the reader.

Proposition 5.2.1. If (𝑋𝑖)𝑖∈𝐼 is a family of sets, 𝑌 is any set, and 𝑓𝑖 ∶ 𝑌 → 𝑋𝑖
is a family of functions, there exists a unique function

𝑔 ∶ 𝑌 → ∏
𝑖∈𝐼

𝑋𝑖

such that 𝜋𝑖 ∘ 𝑔 = 𝑓𝑖 for all 𝑖 ∈ 𝐼.

We will sometimes denote the function 𝑔 given by Proposition 5.2.1 as ⟨𝑓𝑖⟩𝑖∈𝐼 .

We now wish to obtain a similar construction for topological spaces. Namely,
given a family (𝑋𝑖)𝑖∈𝐼 of topological spaces, we wish to define a product space 𝑃 ,
together with continuous functions 𝜋𝑖 ∶ 𝑃 → 𝑋𝑖, satisfying a universal property
analogous to Proposition 5.2.1.
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The solution is very simple: we build a space starting with the set-theoretic
product construction, and equipping it with a topology that makes the projec-
tion functions continuous. This is made explicit by the following definition.

Definition 5.2.2. Let (𝑋𝑖)𝑖∈𝐼 be a family of topological spaces. The product
space of the 𝑋𝑖 is defined to be the set

𝑃 = ∏
𝑖∈𝐼

𝑋𝑖,

equipped with the initial topology induced by the projection functions 𝜋𝑖 ∶ 𝑃 →
𝑋𝑖.

To show that Definition 5.2.2 is the “correct” definition, we prove a correspond-
ing universal property mirroring the one for products of sets.

Proposition 5.2.3. Let (𝑋𝑖)𝑖∈𝐼 be a family of topological spaces. For any
topological space 𝑌 , and any family of continuous functions 𝑓𝑖 ∶ 𝑌 → 𝑋𝑖, there
exists a unique continuous function 𝑔 ∶ 𝑌 → ∏𝑖∈𝐼 𝑋𝑖 such that 𝜋𝑖 ∘ 𝑔 = 𝑓𝑖.

Proof. Let 𝑃 = ∏𝑖∈𝐼 𝑋𝑖. Thanks to Proposition 5.2.1, we know that there ex-
ists a unique function 𝑔 ∶ 𝑌 → 𝑃 , so the uniqueness part is clearly satisfied. As
for existence, it suffices to show that the function 𝑔 is continuous. By Propo-
sition 4.5.9, 𝑔 is continuous as long as 𝜋𝑖 ∘ 𝑔 is continuous for all 𝑖 ∈ 𝐼 . But
𝜋𝑖 ∘ 𝑔 = 𝑓𝑖, which is continuous by assumption.

As a degenerate example of product, consider the empty family of spaces. Since
there is exactly one empty family, the product of the empty family is a space
consisting of a single point. We will refer to this space as the terminal space,
and denote it 1. Its topology is both the discrete and the chaotic topology on
the underlying set.

One of the reason why universal properties are interesting and useful is that
constructions satisfying universal properties are usually uniquely determined
up to the appropriate notion of “isomorphism”. For us, this notion is given by
homeomorphism (Definition 3.2.3). More precisely, let us say that a space 𝑃 ,
together with continuous functions 𝑝𝑖 ∶ 𝑃 → 𝑋𝑖 satisfies the universal property of
the product of the 𝑋𝑖 if for all spaces 𝑌 , and all continuous functions 𝑓 ∶ 𝑌 → 𝑋𝑖,
there exists a unique continuous function 𝑔 ∶ 𝑌 → 𝑃 such that 𝑝𝑖 ∘ 𝑔 = 𝑓𝑖.

Exercise 35. Without referring to the construction of the product above, prove
that given two spaces 𝑃 and 𝑃 ′, with continuous functions 𝑝𝑖 ∶ 𝑃 → 𝑋𝑖 and
𝑝′

𝑖 ∶ 𝑃 → 𝑋𝑖, both satisfying the universal property of the product of the 𝑋𝑖,
there exists a unique homeomorphism ℎ ∶ 𝑃 → 𝑃 ′ such that 𝑝′

𝑖 ∘ ℎ = 𝑝𝑖.

Although we have defined the product of a family of spaces using an explicit
construction, we are also allowed to think of the universal property itself as
an indirect definition of the product, in the sense that any space 𝑃 equipped
with continuous functions 𝑝𝑖 ∶ 𝑃 → 𝑋𝑖 satisfying the universal property of the
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product given above could equally well be regarded as a product of the 𝑋𝑖, re-
gardless of how the product is defined. From this point of view, the construction
given in Definition 5.2.2, together with the proof of Proposition 5.2.3, could be
interpreted as a proof that there exists a product of any family of spaces.

Because of the considerations above, we will often say that a certain space 𝑃
is the product of a family (𝑋𝑖)𝑖∈𝐼 when it satisfies the corresponding universal
property. Thanks to Exercise 35, this is equivalent to saying that 𝑃 is homeo-
morphic to the product of the 𝑋𝑖.

Exercise 36. Show that ℝ𝑛 is the product of 𝑛 copies of ℝ. Show that ℂ is the
product of two copies of ℝ. Deduce that ℂ𝑛 ≅ ℝ2𝑛.

Exercise 37. Prove that 𝐷𝑛 × 𝐷𝑚 ≅ 𝐷𝑛+𝑚. [Hint: define a function 𝜙 ∶
𝐷𝑛 × 𝐷𝑚 → 𝐷𝑛+𝑚 as 𝜙(𝑢, 𝑣) = (𝑢, 𝑣)√‖𝑢‖2 + ‖𝑣‖2/max(‖𝑢‖, ‖𝑣‖) and prove
that 𝜙 is continuous in (0, 0).]
Exercise 38. Construct a homeomorphism between ℝ𝑛+1 ∖{0} and 𝑆𝑛 ×ℝ [Hint:
polar coordinates].

The topology on the product of two topological spaces can also be characterised
directly in terms of bases.

Proposition 5.2.4. Let 𝑋, 𝑌 be topological spaces. Let ℬ be the collection of
subsets of 𝑋 × 𝑌 of the form 𝑈 × 𝑉 , where 𝑈 is an open set in 𝑋 and 𝑉 an
open set in 𝑌 . Then ℬ is a base for the topology of 𝑋 × 𝑌 .

Proof. First observe that ℬ is stable under finite intersections, so all we need
to show is that it generates the topology on 𝑋 × 𝑌 .

Let 𝜋0 ∶ 𝑋 × 𝑌 → 𝑋 and 𝜋1 ∶ 𝑋 × 𝑌 → 𝑌 denote the two projections. If
𝑈 is open in 𝑋, then by definition of product space 𝜋−1

0 (𝑈) is an open set of
𝑋 × 𝑌 . But 𝜋−1

0 (𝑈) = 𝑈 × 𝑌 ∈ ℬ, and similarly 𝜋−1
1 (𝑉 ) = 𝑋 × 𝑉 , hence the

topology generated by ℬ is finer than the product topology. On the other hand,
𝑈 × 𝑉 = 𝜋−1

0 (𝑈) ∩ 𝜋−1
1 (𝑉 ), hence the elements of ℬ are open in the product

topology. It follows that ℬ generates exactly the product topology.

Note that Proposition 5.2.4 cannot directly be generalised to arbitrary products.
In particular, given a family of topological spaces (𝑋𝑖)𝑖∈𝐼 , a product of ∏𝑖∈𝐼 𝑈𝑖
where each 𝑈𝑖 is an open set in 𝑋𝑖 is not guaranteed to be open in the product
topology.

Exercise 39. Let 𝐷 be a discrete space. Show that 𝐷ℕ ∶= ∏𝑛∈ℕ 𝐷 is discrete
if and only if 𝐷 is the terminal space. Deduce that an infinite product of open
sets is not necessarily open in the product topology.

Note that the product of a family of the form (𝑋)𝑖∈𝐼 , i.e. consisting of a copy
of the same space 𝑋 for each element of a set 𝐼 , can be thought of as the set of
functions 𝐼 → 𝑋, which is also denoted 𝑋𝐼 .
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Exercise 40. Prove that a filter ℱ converges to 𝑥 ∈ ∏𝑖∈𝐼 𝑋𝑖, if and only if it
does so pointwise, i.e. if for all 𝑖 ∈ 𝐼 , the image filter (𝜋𝑖)∗(ℱ) converges to 𝑥𝑖.

5.3 Coproducts
While completely dual to products, coproducts of sets might be unfamiliar to
the reader, hence we review them here. Our goal, as in the previous subsections,
will then be to establish a construction for topological spaces that satisfies an
analogous universal property.

The coproduct of sets is another name for their disjoint union. Given a family
of sets (𝑋𝑖)𝑖∈𝐼 , if the 𝑋𝑖 happen to be pairwise disjoint (i.e. 𝑋𝑖 ∩ 𝑋𝑗 = ∅ for all
𝑖, 𝑗 ∈ 𝐼), then their coproduct could be defined as simply their union ⋃𝑖∈𝐼 𝑋𝑖.

In the general case, we need to somehow force all the 𝑋𝑖 to be disjoint before
taking their union. The “trick” is to pair every element of an 𝑋𝑖 with the
corresponding index 𝑖, i.e. to replace 𝑋𝑖 with 𝑋′

𝑖 ∶= {𝑖} × 𝑋𝑖. This way, even if
an element 𝑥 belongs to more than one set, say 𝑥 ∈ 𝑋𝑖 and 𝑥 ∈ 𝑋𝑗, the pairs
(𝑖, 𝑥) and (𝑗, 𝑥) are still distinct, hence the modified sets 𝑋′

𝑖 are always disjoint.
The construction is summarised by the following definition.

Definition 5.3.1. Let (𝑋𝑖)𝑖∈𝐼 be a family of sets. The coproduct of the 𝑋𝑖,
denoted

∐
𝑖∈𝐼

𝑋𝑖,

is the set of pairs (𝑖, 𝑥), where 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑋𝑖.

There are obvious maps 𝜄𝑖 ∶ 𝑋𝑖 → ∐𝑖∈𝐼 𝑋𝑖 defined by 𝜄𝑖(𝑥) = (𝑖, 𝑥). We will refer
to the 𝜄𝑖 as coproduct injections. A coproduct injection 𝜄𝑖 is indeed injective,
hence it allows us to regard 𝑋𝑖 as a subset of the coproduct, with which we will
often implicitly identify it.

Exercise 41. Let 𝑓 ∶ 𝐴 → 𝐵 be a function. For all 𝑏 ∈ 𝐵, let 𝐹𝑏 be the fibre of 𝑓
over 𝑏, i.e. the inverse image of the singleton {𝑏}. Establish a bijection between
𝐴 and ∐𝑏∈𝐵 𝐹𝑏.

The reason for introducing the term “coproduct” instead of simply referring to
this construction as a disjoint union is twofold:

1. it emphasises its dual nature to products (as demonstrated below)
2. it generalises to other categories where coproducts are not disjoint unions.

The duality with products manifests itself in the universal property for coprod-
ucts, whose statement can be obtained purely formally by reversing all the
arrows in Proposition 5.2.1.

Proposition 5.3.2. If (𝑋𝑖)𝑖∈𝐼 is a family of sets, 𝑌 is any set, and 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌
is a family of functions, there exists a unique function

𝑔 ∶ ∐
𝑖∈𝐼

𝑋𝑖 → 𝑌
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such that 𝑔 ∘ 𝜄𝑖 = 𝑓𝑖 for all 𝑖 ∈ 𝐼.

Proof. If such a 𝑔 exists, then 𝑔(𝑖, 𝑥) = 𝑔(𝜄𝑖(𝑥)) = 𝑓𝑖(𝑥), hence 𝑔 is unique. On
the other hand, we can take this equation as the definition of 𝑔, which shows
existence as well.

Exercise 42. Show that the empty set is the coproduct of the empty family of
sets.

Just like in the case of products, we will often consider binary coproducts,
denoted 𝑋 + 𝑌 for the family consisting of the two spaces 𝑋 and 𝑌 . The
elements of 𝑋 + 𝑌 are all those pairs (0, 𝑥) and (1, 𝑦), with 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 .
The reason for using the symbol + to denote binary coproducts is explained by
the following exercise.

Exercise 43. If 𝑋 and 𝑌 are finite sets of cardinalities 𝑛 and 𝑚 respectively,
show that 𝑋 + 𝑌 has cardinality 𝑛 + 𝑚.

Thanks to the duality between coproduct and products, there is an obvious
candidate for the construction of the coproduct of topological spaces, which we
now define.

Definition 5.3.3. Let (𝑋𝑖)𝑖∈𝐼 be a family of topological spaces. The coproduct
space of the 𝑋𝑖 is the coproduct of the 𝑋𝑖 as sets:

𝐶 = ∐
𝑖∈𝐼

𝑋𝑖,

equipped with the final topology induced by the coproduct injections 𝜄𝑖 ∶ 𝑋𝑖 →
𝐶.

By Proposition 4.5.7, a set 𝑈 is open in 𝐶 if and only if 𝑈 ∩ 𝑋𝑖 is open in 𝑋𝑖
for all 𝑖 ∈ 𝐼 . Here we are identifying 𝑋𝑖 with the corresponding subset 𝜄𝑖(𝑋𝑖)
of 𝐶. In particular, every 𝑋𝑖 is always open when regarded as a subset of 𝐶.

Exercise 44. Prove that all coproduct injections 𝜄𝑖 are homeomorphisms with
their image, i.e. that the induced maps 𝑋𝑖 → 𝜄𝑖(𝑋𝑖) are homeomorphisms.

Adapting the universal property of coproducts to topological spaces is straight-
forward:

Proposition 5.3.4. Let (𝑋𝑖)𝑖∈𝐼 be a family of topological spaces. For any
topological space 𝑌 , and any family of continuous functions 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌 , there
exists a unique continuous function 𝑔 ∶ ∐𝑖∈𝐼 𝑋𝑖 → 𝑌 such that 𝑔 ∘ 𝜄𝑖 = 𝑓𝑖.

Proof. We know from Proposition 5.3.2 that there exists a unique such function
𝑔, so all we need to show is that 𝑔 is continuous, but that follows directly from
Proposition 5.1.3 and the fact that every 𝑋𝑖 is open in the coproduct space.

Similar considerations to those about products apply here. In particular, we can
define what it means for a space to have the universal property of the coproduct
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of a family of spaces, and any two such spaces are homeomorphic with a unique
homeomorphism that is compatible with the coproduct injections. The details
can be obtained by formally dualising those for products, and are left to the
reader to work out explicitly.

Exercise 45. Let 𝑈, 𝑉 be disjoint open sets of a topological space 𝑋. Show
that the subspace 𝑈 ∪ 𝑉 is homeomorphic to the coproduct 𝑈 + 𝑉 . Does the
statement also hold for closed sets? Find a counterexample to the statement
when only 𝑈 is assumed to be open.

Coproducts of spaces have a direct geometric interpretation: the coproduct of
two spaces 𝑋 and 𝑌 is what we get if we consider both of them at the same
time as a single space. A “picture” of 𝑋 + 𝑌 simply looks like a picture of 𝑋
next to a picture of 𝑌 .

Exercise 46. Show that a discrete space 𝑋 is the coproduct of the family (1)𝑥∈𝑋,
i.e. a coproduct of copies of the terminal space 1, one for each point in 𝑥.

Exercise 47. Let 𝐶 = ∐𝑖∈𝐼 𝑋 be the coproduct of a constant family of spaces,
i.e. of a family consisting of copies of a single space, one for each element of
the indexing set 𝐼 . Show that 𝐶 ≅ 𝐼 × 𝑋, where 𝐼 is regarded as a discrete
topological space.

5.4 Quotients
If ∼ is an equivalence relation on a set 𝑋, recall that the quotient 𝑋/∼ of 𝑋
by ∼ is defined to be the set of equivalence classes of ∼. There is a function
𝜋 ∶ 𝑋 → 𝑋/∼ that maps every element of 𝑥 to its equivalence class. Quotients
also satisfy a universal property, whose proof is left to the reader.

Proposition 5.4.1. Let ∼ be an equivalence relation on a set 𝑋, and let 𝑓 ∶
𝑋 → 𝑌 be a function such that 𝑥 ∼ 𝑥′ implies 𝑓(𝑥) = 𝑓(𝑥′). Then there exists
a unique function 𝑔 ∶ 𝑋/∼ → 𝑌 such that 𝑔 ∘ 𝜋 = 𝑓.

The condition on the function 𝑓 in Proposition 5.4.1 can be expressed by saying
that 𝑓 is compatible with the equivalence relation ∼.

As usual, we are looking to adapt the quotient construction to topological spaces.
Again, the definition is straightforward.

Definition 5.4.2. Let 𝑋 be a topological space and ∼ an equivalence relation
on 𝑋. The quotient space 𝑋/∼ is defined to be the quotient of 𝑋 by ∼ as a set,
equipped with the final topology induced by the single function 𝜋 ∶ 𝑋 → 𝑋/∼.

In other words, a subset 𝑈 is open in 𝑋/∼ if and only if its inverse image along
𝜋 is open in 𝑋. In particular 𝜋 is continuous. The fact that the topology on
𝑋/∼ is defined as a final one makes it easy to show the corresponding universal
property.

Proposition 5.4.3. Let 𝑋 be a topological space and ∼ an equivalence relation
on 𝑋. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous function that is compatible with ∼. Then
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there exists a unique continuous function 𝑔 ∶ 𝑋/∼ → 𝑌 such that 𝑔 ∘ 𝜋 = 𝑓.

Proof. We know from Proposition 5.4.1 that there is a unique such function 𝑔,
so we only need to show that 𝑔 is continuous, and that follows immediately from
Proposition 4.5.10 and the fact that 𝑓 is continuous.

5.4.1 Example: gluing disks

Quotients are extremely important in topology, as they allow us to glue together
spaces. To illustrate the idea, we will work through the example of gluing two
disks by their boundaries.

Consider two copies of the disk 𝐷𝑛, i.e. the coproduct space 𝑋 = 𝐷𝑛 + 𝐷𝑛. We
can picture 𝑋 as two parallel disks in ℝ𝑛+1, lying one above the other (this is
easier to visualise when 𝑛 ≤ 2).

Figure 2: Two
disks being glued

Now we want to glue together the boundaries of the two
disks, by stitching together pairs of points on the respec-
tive boundaries that lie directly above each other (i.e. when
their first 𝑛 coordinates are equal).

To make this intuition precise, first recall that by Exer-
cise 47 𝑋 can be regarded as the product 2 × 𝑋, where
2 = {0, 1} is a discrete space. We define an equivalence
relation ∼ on 𝑋 by declaring that (𝑖, 𝑥) ∼ (𝑖′, 𝑥′) precisely
when 𝑥 = 𝑥′ and at least one of the following two conditions
holds: 𝑖 = 𝑖′ or 𝑥 ∈ 𝜕𝐷𝑛.

In other words, we are identifying two points when they
are the same point, or when their second components are
equal. The first condition is needed to make sure that ∼
is an equivalence relation, while the second formalises the
idea that we are prescribing that corresponding points in
the two boundaries should be stitched together.

Exercise 48. Show that ∼ defined above is indeed an equivalence relation on 𝑋.

We can now take the quotient space 𝑋/∼. We can visualise this space as the
result of actually applying the stitches prescribed by ∼. If we make the stitches
airtight, and inflate the inside, what we get is a sphere. Of course, this is only
a vague intuition, but thankfully, we can apply the theory developed so far to
make it completely precise.

Proposition 5.4.4. The quotient space 𝑋/∼ is homeomorphic to 𝑆𝑛.

Proof. Regard 𝑆𝑛 as a subset of ℝ × ℝ𝑛, and denote by 𝑆𝑛
+ (resp. 𝑆𝑛

−) the set of
points (𝜉, 𝑢) such that 𝜉 ≥ 0 (resp 𝜉 ≤ 0). It is clear that 𝑆𝑛

+ and 𝑆𝑛
− are closed

subsets of 𝑆𝑛, and that their union is 𝑆𝑛.

Now define a map 𝜙+ ∶ 𝑆𝑛
+ → 𝑋/∼ as 𝜙+(𝜉, 𝑢) = 𝜋(1, 𝑢), where 𝜋 ∶ 𝑋 → 𝑋/∼ is

the projection into the quotient. Similarly, define 𝜙− ∶ 𝑆𝑛
− → 𝑋/∼ by 𝜙−(𝜉, 𝑢) =
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𝜋(0, 𝑢). It is clear that 𝜙+ and 𝜙− are continuous.

The intersection 𝐸 = 𝑆𝑛
+∩𝑆𝑛

− consists of points of the form (0, 𝑢), where ‖𝑢‖ = 1,
hence such a 𝑢 belongs to the boundary of the disk 𝐷𝑛. It follows that 𝜋(0, 𝑢) =
𝜋(1, 𝑢) by the definition of ∼, hence 𝜙+ and 𝜙− coincide on 𝐸.

Therefore, we can apply Proposition 5.1.4 to obtain a continuous function 𝜙 ∶
𝑆𝑛 → 𝑋/∼ such that 𝜙(𝜉, 𝑢) = 𝜋(𝑖, 𝑢), where 𝑖 = 1 if and only if 𝜉 ≥ 0.

In the other direction, let 𝜓 ∶ 𝑋 → 𝑆𝑛 be given by:

𝜓(𝑖, 𝑥) = ((−1)𝑖√1 − ‖𝑥‖2, 𝑥).

The function 𝜓 is clearly continuous, so to obtain a continuous function 𝑋/∼ →
𝑆𝑛 all we need to show is that 𝜓 is compatible with ∼. So suppose (𝑖, 𝑥) ∼
(𝑖′, 𝑥′). It is of course enough to consider the case where 𝑥 = 𝑥′ and 𝑥 ∈ 𝜕𝐷𝑛.
Then ‖𝑥‖ = 1, hence 𝜓(𝑖, 𝑥) = (0, 𝑥) = (0, 𝑥′) = 𝜓(𝑖′, 𝑥′), as required.

To verify that 𝜓 ∘ 𝜙 = id, it is enough to show that 𝜓(𝜙+(𝜉, 𝑢)) = (𝜉, 𝑢) for
all (𝜉, 𝑢) ∈ 𝑆𝑛

+, and similarly for 𝜙−. 𝜓(𝜙+(𝜉, 𝑢)) = 𝜓(𝜋(1, 𝑢)) = 𝜓(1, 𝑢) =
(√1 − ‖𝑢‖2, 𝑢), and the required equation follows from the fact that 𝜉2+‖𝑢‖2 = 1
and that 𝜉 ≥ 0. The verification for 𝜙− is entirely analogous.

Finally, let us verify that 𝜙 ∘ 𝜓 = id. First note that 𝜙(𝜓(𝑥)) =
𝜙((−1)𝑖√1 − ‖𝑥‖2, 𝑥) = 𝜋(𝑖, 𝑥), hence 𝜙 ∘ 𝜓 ∘ 𝜋 = 𝜋. But of course, also
id ∘ 𝜋 = 𝜋, hence by the uniqueness part of Proposition 5.4.3, we get that
𝜙 ∘ 𝜓 = id, which completes the proof.

Note how the proof of Proposition 5.4.4 constructs both directions of a homeo-
morphisms. We will see later (in Corollary 8.1.8) that in many cases, including
this one, it is enough to construct one of the two maps and show that it is a
bijection. This allows to produce relatively simple proofs of homeomorphisms
in certain cases where an inverse function cannot defined explicitly, hence its
continuity is hard to prove.

We will often refer to Corollary 8.1.8 when constructing homeomorphisms. Since
Corollary 8.1.8 refers to notions that will not have been introduced yet, we ask
the reader to temporarily take it on faith that the statement can indeed by
applied, and encourage them to review these proofs after Corollary 8.1.8 itself
has been proved.

5.4.2 Collapsing subspaces

If 𝑋 is a topological space, and 𝐴 a subset of 𝑋, define an equivalence relation
∼ on 𝑋 by declaring that 𝑥 ∼ 𝑥′ if and only if 𝑥 = 𝑥′ or both 𝑥 and 𝑥′ belong
to 𝐴. In other words, ∼ is the minimal equivalence relation such that 𝑎 ∼ 𝑎′

for all 𝑎, 𝑎′ ∈ 𝐴.
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The quotient 𝑋/∼ is denoted 𝑋/𝐴, and we say that 𝑋/𝐴 is obtained from 𝑋
by collapsing 𝐴. The idea is of course that 𝐴 is reduced to a single point in the
quotient, and everything else is left unchanged.

Exercise 49. Let 𝑋 be the space obtain from ℝ by collapsing the subset {−1, 1}.
Show that 𝑋 is homeomorphic to the set 𝐶 of points (𝑥, 𝑦) in ℝ2 satisfying the
following polynomial equation:

𝑦2 = 𝑥(𝑥 − 1)2.

[Hint: consider the map ̃𝜙 ∶ ℝ → 𝐶 defined by 𝜙(𝑡) = (𝑡2, 𝑡2(𝑡2 − 1)2), show that
it defines a map on 𝑋, then find an inverse for that]

𝑋

𝐶𝑋

𝑋 × {1}

Figure 3: Cone on
𝑋

An important example of space that is constructed by
collapsing is the cone. In the following, [𝑎, 𝑏] will denote
the closed interval of the real line with endpoints 𝑎 and 𝑏.

Definition 5.4.5. Let 𝑋 a topological space. The cone
on 𝑋, denoted 𝐶𝑋, is the space obtained from 𝑋 × [0, 1]
by collapsing 𝑋 × {1}.

Exercise 50. If 𝑋 is a subspace of ℝ𝑛, prove that 𝐶𝑋
is homeomorphic to the union of all those segments in
ℝ𝑛+1 = ℝ𝑛 × ℝ obtained by joining the point (0, 1) to all
the points (𝑥, 0), where 𝑥 ranges over the points of 𝑋.

For any space 𝑋, there is a canonical injection 𝑗 ∶ 𝑋 →
𝐶𝑋 that maps 𝑥 to 𝜋(0, 𝑥).
Proposition 5.4.6. The map 𝑗 ∶ 𝑋 → 𝐶𝑋 is a homeomorphism with its image.

Proof. Clearly 𝑗 is continuous and bijective. To show that its inverse is also
continuous, we prove that 𝑗 is closed. So, let 𝐶 ⊆ 𝑋 be closed. Since the
only collapsed points in 𝑋 × [0, 1] have second coordinate equal to 1, we have
that 𝜋−1(𝑗(𝐶)) = 𝐶 × {0}, which is closed. Therefore 𝑗(𝐶) is closed by Corol-
lary 4.5.8.

Another basic construction on spaces is the suspension:

Definition 5.4.7. Let 𝑋 be a topological space. The suspension of 𝑋, denoted
𝑆𝑋, is the quotient space of 𝑋 × [−1, 1] by the relation ∼ defined as follows:
(𝑥, 𝑡) ∼ (𝑥′, 𝑡′) if 𝑡 = 𝑡′ and at least one of the following conditions hold: 𝑥 = 𝑥′

or |𝑡| = 1.

Exercise 51. Show that 𝑆𝑋 is homeomorphic to the space obtained from 𝑋 ×
[−1, 1] by first collapsing 𝑋 × {1}, and then collapsing 𝜋(𝑋 × {−1}), where 𝜋
denotes the projection from 𝑋 × [−1, 1] into the quotient.

The name suspension suggests a picture where 𝑋 is “suspended” mid-air by
wires connecting it to two points on the two sides of 𝑋. This can be made
precise (at least when 𝑋 is a subspace of ℝ𝑛).
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Exercise 52. If 𝑋 is a subspace of ℝ𝑛, prove that 𝐶𝑋 is homeomorphic to the
union of all those segments in ℝ𝑛+1 = ℝ𝑛 × ℝ obtained by joining the points
(0, ±1) to the points (𝑥, 0), where 𝑥 ranges over the points of 𝑋.

𝑋

𝑋 × {−1}

𝑋 × {1}

Figure 4: Suspension
of 𝑋

The following proposition establishes a link between
cone and suspension.

Proposition 5.4.8. Let 𝑋 be a topological space. The
suspension 𝑆𝑋 is homeomorphic to the space 𝑌 obtained
by gluing two copies of 𝐶𝑋 along 𝑋. More precisely, 𝑌
is the quotient of 𝐶𝑋 + 𝐶𝑋 by the minimal equivalence
relation ≈ such that 𝜄0(𝑗(𝑥)) ≈ 𝜄1(𝑗(𝑥)) for all 𝑥 ∈ 𝑋.

Proof. Thanks to Proposition 5.4.3, we can define a con-
tinuous function 𝑓0 ∶ 𝐶𝑋 → 𝑆𝑋 such that 𝑓0(𝜋(𝑥, 𝑡)) =
𝜋(𝑥, 𝑡). Here we are using 𝜋 to denote both the projec-
tion 𝑋 × [0, 1] → 𝐶𝑋 and the projection 𝑋 × [−1, 1] →
𝑋. This should not cause any confusion.

Similarly, we define 𝑓1 ∶ 𝐶𝑋 → 𝑆𝑋 via 𝑓1(𝜋(𝑥, 𝑡)) =
𝜋(𝑥, −𝑡). Together, they define a function ̃𝜙 ∶ 𝐶𝑋 +
𝐶𝑋 → 𝑆𝑋, and it is immediate to verify that ̃𝜙 is com-
patibile with ≈, hence it determines a continuous map
𝜙 ∶ 𝑌 → 𝑆𝑋.

As for the the other direction, let 𝑆+𝑋 = 𝜋(𝑋×[0, 1]) ⊆ 𝑆𝑋. Since 𝜋−1(𝑆+𝑋) =
𝑋 × [0, 1], which is closed in 𝑋 × [−1, 1], it follows that 𝜋−1(𝑆+𝑋) is closed.
Similarly 𝑆−𝑋 = 𝜋(𝑋 ×[−1, 0]) is a closed subset of 𝑆𝑋. Define 𝜓+ ∶ 𝑆+𝑋 → 𝑌
by 𝜓+(𝜋(𝑥, 𝑡)) = 𝜋(𝜄0(𝑥, 𝑡)) and 𝜓− ∶ 𝑆−𝑋 → 𝑌 by 𝜓−(𝜋(𝑥, 𝑡)) = 𝜋(𝜄1(𝑥, 𝑡)). It
is easily checked that 𝜓+ and 𝜓− coincide on 𝑆+𝑋 ∩ 𝑆−𝑋, hence they define a
continuous function 𝜓 ∶ 𝑆𝑋 → 𝑌 .

Verifying that 𝜓 is the inverse of 𝜙 is now a simple matter of expanding the def-
initions and using the uniqueness part of the universal properties of the various
quotients.

Exercise 53. Show that 𝐷𝑛+1 ≅ 𝐶𝑆𝑛. Deduce from Proposition 5.4.4 and
Proposition 5.4.8 that 𝑆𝑆𝑛 ≅ 𝑆𝑛+1.

Exercise 54. Show that 𝐶𝑋/𝑋 ≅ 𝑆𝑋. Deduce that 𝑆𝑛 ≅ 𝐷𝑛/𝜕𝐷𝑛.

5.5 Example: the torus
There are often many ways to define a topological space: we can regard it as a
subspace of ℝ𝑛, or construct it indirectly using previously defined spaces. An
example of space which can be obtained in several equivalent ways is the torus.
The simplest definition, and often the most convenient to work with, is the
following.
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Definition 5.5.1. The torus is the product 𝑆1 × 𝑆1 of two copies of the circle.

a
b

Figure 5: The torus

In fig. 5, the two circles labelled 𝑎 and 𝑏 denote the
“axes” of the product, say 𝑆1×{𝑁} and {𝑁}×𝑆1, where
we have arbitrarily chosen 𝑁 as a base point for both
copies of the circle. The point (𝑁, 𝑁) is the intersection
of these two circles.

Another way to look at the torus is as the quotient of a
square. More precisely, consider the equivalence relation
∼ on [0, 1] × [0, 1] generated by the following clauses:

(𝑠, 0) ∼ (𝑠, 1),
(0, 𝑡) ∼ (1, 𝑡)

and define 𝑇 ∶= ([0, 1] × [0, 1])/∼ to be the corresponding quotient space. We
will show that this is an equivalent definition of the torus. In the following,
we will often regard 𝑆1 as a subspace of ℂ through the usual identification
ℝ2 ≅ ℂ. Under that identification, the circle can be regarded as the set of
complex numbers of absolute value 1.

a

b

b

a

Figure 6: The torus as a
quotient of [0, 1] × [0, 1]

The equivalence relation ∼ is illustrated in fig. 6: the
two arrows labelled 𝑎 mark segments that end up be-
ing identified in the quotient. The direction of the
arrows is the same, meaning that the equivalence re-
lation identifies points on the line having the same 𝑦
coordinate. Similarly for the arrows labelled 𝑏. Tak-
ing the quotient can be visualised as “folding” the
square so as to make the top side of the square co-
incide with the bottom one, and then “bending” the
resulting cylinder so as to join one of its boundary
circles with the other one.

Proposition 5.5.2. The quotient space 𝑇 defined
above is homeomorphic to the torus.

Proof. Define a function ̃𝜙 ∶ [0, 1]×[0, 1] → 𝑆1×𝑆1 by
̃𝜙(𝑠, 𝑡) = (𝑒2𝜋𝑖𝑠, 𝑒2𝜋𝑖𝑡). Since the exponential function

ℂ → ℂ is continuous, it follows that ̃𝜙 is continuous. Surjectivity of ̃𝜙 follows
from well-known properties of the exponential function.

Next, we can show that ̃𝜙 is compatible with the equivalence relation ∼, simply
by applying ̃𝜙 to pairs of elements identified by ∼, and showing that they are
mapped to the same element. Indeed, ̃𝜙(0, 𝑡) = (1, 𝑒2𝜋𝑖𝑡) = (𝑒2𝜋𝑖, 𝑡) = ̃𝜙(1, 𝑡),
and similarly for the other defining clause of ∼. Therefore, by Proposition 5.4.3,
we get a continuous surjective function 𝜙 ∶ 𝑇 → 𝑆1 × 𝑆1

To show that 𝜙 is injective, first observe that we can the equivalence relation ∼
directly as follows: two points 𝑥, 𝑥′ ∈ [0, 1] × [0, 1] satisfy 𝑥 ∼ 𝑥′ if and only if
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Figure 7: Parameterisation of a torus in ℝ3

their coordinates differ by integers, i.e. 𝑥 − 𝑥′ ∈ ℤ2. Now, if 𝜙(𝜋(𝑥)) = 𝜙(𝜋(𝑥′))
for som, then it follows from the periodicity of the exponential function that
𝑥 − 𝑥′ ∈ ℤ2, hence 𝜋(𝑥) = 𝜋(𝑥′) by the above observation.

Finally, it will follow from Corollary 8.1.8 that 𝜙 is a homeomorphism, conclud-
ing the proof.

Note that fig. 5 is a 3-dimensional representation of the torus, while by Defi-
nition 5.5.1 the torus is naturally a subspace of ℝ4. One can make the corre-
spondence between these two representations precise, by exhibiting a homeo-
morphism between the torus and the subset of ℝ3 depicted in fig. 5.

Exercise 55. Construct a map 𝜓 ∶ 𝑆1 × 𝑆1 → ℝ3 using the following steps (cf.
fig. 7):

• consider a circle of some radius 𝑟 > 0 in the (𝑥, 𝑧) plane (i.e. the plane
defined by 𝑦 = 0), and let 𝑣0 ∶ 𝑆1 → ℝ3 a corresponding parameterisation;

• offset 𝑣0 by a constant 𝑅 > 𝑟 along the 𝑥 axis, obtaining a new parame-
terisation 𝑣 ∶ 𝑆1 → ℝ3;

• for 𝑡 ∈ 𝑆1, consider the matrix 𝐴(𝑡) which rotates space around the 𝑧 axis
by an angle 2𝜋𝑡;

• let 𝜓(𝑠, 𝑡) be defined as 𝐴(𝑡)𝑣(𝑠).
Show that 𝜓 is continuous and bijective. It will follow from Corollary 8.1.8 that
it is a homeomorphism with its image.

Exercise 56. Let 𝑝 ∶ ℝ → 𝑆1 be the map defined by 𝑝(𝑡) = 𝑒2𝜋𝑖𝑡. Show that the
restriction of 𝑝 to the half-open interval [0, 1[ is continuous and bijective, but
not a homeomorphism.

5.6 Example: real projective spaces
Projective spaces are of fundamental importance in algebraic topology and al-
gebraic geometry. Here we give their definition in the real case, and prove
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a few equivalent characterisations. The complex case will be examined later
(section 8.6).

Definition 5.6.1. Let ∼ be the equivalence relation on ℝ𝑛+1 ∖{0} where 𝑥 ∼ 𝑦
if and only if there exists 𝜆 ∈ ℝ with 𝑥 = 𝜆𝑦. The quotient space ℝ𝑛+1/∼ is
called the 𝑛-dimensional real projective space, and is denoted ℝ𝑃 𝑛.

Note that the equivalence classes for the relation ∼ on ℝ𝑛+1 ∖ {0} are simply
lines through the origin (minus the origin itself, of course). It follows that there
is a bijection between ℝ𝑃 𝑛 and the set of one-dimensional linear subspaces of
ℝ𝑛+1. This observation can be used to equip the latter set with a topology,
giving a first example of a Grassmannian, i.e. a space whose points are linear
subspaces of some vector space.

The projection function 𝜋 ∶ ℝ𝑛+1 ∖ {0} → ℝ𝑃 𝑛 allows us to write points in
ℝ𝑃 𝑛 in terms of 𝑛 + 1 coordinates, usually indexed starting from 0, which are
called homogeneous coordinates of a point. By the definition of the equivalence
relation, homogeneous coordinates are determined up to a scalar multiple, and
they cannot all be zero. The point 𝜋(𝑥0, …, 𝑥𝑛) will also be written as [𝑥0, …, 𝑥𝑛].
Another way to think about ℝ𝑃 𝑛 is as as an 𝑛-dimensional Euclidean space with
some extra points, which we picture to be “at infinity”. This is made precise by
the following.

Proposition 5.6.2. Assume 𝑛 > 0. Let 𝑈0 be the set of points [𝑥0, …, 𝑥𝑛] ∈ ℝ𝑃 𝑛

where 𝑥0 ≠ 0. Then 𝑈0 is a dense open subspace of ℝ𝑃 𝑛 homeomorphic to ℝ𝑛,
and the complement of 𝑈0 is homeomorphic to ℝ𝑃 𝑛−1.

Proof. Let 𝑈0 be the set of points 𝑥 = (𝑥0, …, 𝑥𝑛) ∈ ℝ𝑛+1 where 𝑥0 ≠ 0. Clearly,
𝑈0 is open, and it is easy to check that 𝑈0 = 𝜋−1(𝑈0), hence 𝑈0 is open in ℝ𝑃 𝑛.
Since 𝑈0 is dense in ℝ𝑛+1 ∖{0}, it follows (Exercise 14) that 𝑈0 is dense in ℝ𝑃 𝑛.

We now construct a homeomorphism ℝ𝑛 ≅ 𝑈0. Let 𝜙 ∶ ℝ𝑛 → 𝑈0 be defined by
by 𝜙(𝑢1, …, 𝑢𝑛) = [1, 𝑢1, …, 𝑢𝑛]. To construct an inverse for 𝜙, let 𝜓 ∶ 𝑈0 → ℝ𝑛

be given by 𝜓(𝑥0, 𝑥1, …, 𝑥𝑛) = (𝑥1/𝑥0, …, 𝑥𝑛/𝑥0). It is clear that 𝜓 is compatible
with the equivalence relation ∼ on ℝ𝑛+1 ∖ {0}, hence it determines a continuous
function 𝜓 ∶ 𝑈0 → ℝ𝑛. It is now easy to verify that 𝜙 and 𝜓 are inverses to each
other.

Finally, let 𝐻0 be the complement of 𝑈0 in ℝ𝑃 𝑛, and denote by 𝐻0 its inverse
image along 𝜋. Consider the homeomorphism 𝛼 ∶ ℝ𝑛 ∖ {0} → 𝐻0 given by
𝛼(𝑥1, …, 𝑥𝑛) = (0, 𝑥1, …, 𝑥𝑛). It is clear that both 𝛼 and its inverse are com-
patible with the equivalence relations on both spaces, hence they determine a
homeomorphism ℝ𝑃 𝑛−1 ≅ 𝐻0 between the quotients.

Since points in a projective space are obtained by identifying whole lines in
euclidean space, it makes sense to focus our attention only on those points that
lie on a sphere, since the other points are clearly redundant, as they are always
multiples of normalised points.
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Unfortunately, this does not give a way to canonically iden-
tify a point in ℝ𝑃 𝑛 using coordinates in ℝ𝑛+1, because there
are always two (antipodal) points on the sphere for any given
line through the origin. Nevertheless, using only normalised
points drastically reduces the “redundancy” of this represen-
tation from an infinite number of possible sets of coordinates
to only two!

Proposition 5.6.3. Let ∼ be the equivalence relation on the
sphere 𝑆𝑛 defined by 𝑥 ∼ 𝑦 if and only if 𝑥 = ±𝑦. Then the quotient space
𝑆𝑛/∼ is homeomorphic to ℝ𝑃 𝑛.

Proof. Consider the inclusion function ̃𝑖 ∶ 𝑆𝑛 → ℝ𝑛+1 ∖ {0}, and the function
̃𝑟 ∶ ℝ𝑛+1 ∖ {0} → 𝑆𝑛 defined by ̃𝑟(𝑥) = 𝑥/‖𝑥‖. Clearly ̃𝑟 ∘ ̃𝑖 = id, and both ̃𝑟 and
̃𝑖 are compatible with the equivalence relations on their respective domains. It

follows that they determine functions 𝑖 ∶ 𝑆𝑛/∼ → ℝ𝑃 𝑛 and 𝑟 ∶ ℝ𝑃 𝑛 → 𝑆𝑛/∼,
with 𝑟 ∘ 𝑖 = id. On the other hand, if 𝑥 = (𝑥0, …, 𝑥𝑛) is a representative for
a point in ℝ𝑃 𝑛, then 𝑖(𝑟[𝑥0, …, 𝑥𝑛]) = [𝑥0/‖𝑥‖, …, 𝑥𝑛/‖𝑥‖] = [𝑥0, …, 𝑥𝑛], hence
also 𝑖 ∘ 𝑟 = id, which concludes the proof.

The 1-dimensional projective space, called the projective line, is very special
case, and it is actually homeomorphic to a space we have already encountered.

Proposition 5.6.4. ℝ𝑃 1 ≅ 𝑆1.

Proof. Regard the circle as a subspace of ℂ, and consider the map ̃𝑓 ∶ 𝑆1 →
𝑆1 given by 𝑓(𝑧) = 𝑧2. From the fact that (−𝑧)2 = 𝑧2, we get that ̃𝑓 is
compatible with the equivalence relation on 𝑆1 defined in Proposition 5.6.3,
hence it determines a continuous function 𝑓 ∶ ℝ𝑃 1 → 𝑆1. Since every non-zero
complex number has exactly two square roots, 𝑓 is a bijection. The conclusion
follows from Corollary 8.1.8.

What can we say about ℝ𝑃 2? The argument in Proposition 5.6.4 does not
generalise, and in fact we will be able to show (see Exercise 89) that ℝ𝑃 2 is not
homeomorphic to the 2-sphere, or any other space that we have seen so far.

6 Connectedness
6.1 Connected spaces
When we defined coproducts of spaces, we observed that a binary coproduct
𝑋 + 𝑌 can be thought of as the space obtained by regarding 𝑋 and 𝑌 together
as a single space. In particular, spaces can in general be made out of various
“components”, in a sense that will be made precise below.

To single out those spaces that are in some sense composed of a single “piece”,
we introduce the following definition.
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Definition 6.1.1. A topological space 𝑋 is said to be connected if it is non-
empty, and every function 𝑓 ∶ 𝑋 → 2 is constant. A space that is not connected
will be called disconnected.

Recall that 2 = {0, 1} is a discrete space with two elements. Clearly, a non-
empty space is disconnected if and only if there exists a surjective function
𝑋 → 2, since every non-constant function to 2 is surjective.

Some authors consider the empty space to be connected. However, our con-
vention makes certain important (for example Proposition 6.1.12 and Proposi-
tion 6.3.2) facts have cleaner statements.

Exercise 57. Show that a non-empty space 𝑋 is connected if and only if for all
spaces 𝑌 , 𝑍, if 𝑋 ≅ 𝑌 + 𝑍, then either 𝑌 ≅ ∅ or 𝑍 ≅ ∅.

Another equivalent formulation of connectedness is given by the following propo-
sition.

Proposition 6.1.2. A non-empty topological space 𝑋 is connected if and only
if for all disjoint open sets 𝑈, 𝑉 ⊆ 𝑋 with 𝑈 ∪ 𝑉 = 𝑋, either 𝑈 = ∅ or 𝑉 = ∅.

Proof. Observe that functions 𝑓 ∶ 𝑋 → 2 are in bijective correspondence with
pairs of disjoint open sets 𝑈, 𝑉 with 𝑈 ∪ 𝑉 = 𝑋. In fact, any such 𝑓 determines
𝑈, 𝑉 as the inverse images of the two points 0 and 1. Conversely, given 𝑈, 𝑉 as
above, we can define a corresponding function 𝑓 that maps all the points in 𝑈
to 0, all the points of 𝑉 to 1, and continuity follows from Proposition 5.1.3.

Under this bijection, constant functions correspond to pairs where either 𝑈 or
𝑉 is empty. The statement then follows immediately.

Corollary 6.1.3. A non-empty topological space is connected if and only its
only subsets that are both open and closed are the empty set and the whole
space.

A subset of a space which is both open and closed is sometimes called a clopen
set. So a space is connected if and only if it has exactly two distinct clopen sets.

We now study how continuous functions behave with respect to connectedness.

Proposition 6.1.4. Let 𝑋 be a connected topological space, and 𝑓 ∶ 𝑋 → 𝑌 a
surjective function. Then 𝑌 is connected.

Proof. First, since 𝑋 is non-empty, 𝑌 must also be non-empty. If 𝑔 ∶ 𝑌 → 2
is a continuous function, then 𝑔 ∘ 𝑓 is continuous as well, hence constant by
connectedness of 𝑋. Therefore there exists 𝑖 ∈ 2 such that (𝑔 ∘ 𝑓)−1(𝑖) = 𝑋.
But then 𝑔−1(𝑖) = 𝑓(𝑓−1(𝑔−1(𝑖))) = 𝑓(𝑋) = 𝑌 , hence 𝑔 is constant.

Another way to state Proposition 6.1.4 is to say that the image of a connected
space through a continuous function is connected.

Corollary 6.1.5. Let 𝑋 be a connected topological space, and ∼ an equivalence
relation on 𝑋. Then 𝑋/∼ is connected.
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Corollary 6.1.6. Connectedness is invariant under homeomorphism.

Alternatively, Corollary 6.1.6 can be expressed by saying that connectedness is
a topological property. We can sometimes use this fact to distinguish spaces,
i.e. to show that specific pairs of spaces are not homeomorphism.

This is a general principle in topology, and more generally in geometry and
algebra: an effective technique to prove that two objects cannot be possibly
identified by any isomorphisms is to find some “quantity” (usually a number, or
some sort of algebraic structure) that is relatively easy to calculate, and that is
invariant under the appropriate notion of isomorphism. Then if the two objects
happen to have different values for this quantity, we know that they are not
isomorphic.

Connectedness is one of those invariant quantities in the context of topological
spaces up to homeomorphism. It is a very simple quantity, namely just a truth
value. Nonetheless, it can be useful to distinguish spaces, as we will see later.

Proposition 6.1.7. The closed interval [0, 1] is connected.

Proof. Write [0, 1] = 𝑈 ∪ 𝑉 , with 𝑈 , 𝑉 non-empty disjoint open sets. Let 𝑚 be
the supremum of 𝑈 . Since 𝑈 is closed, 𝑚 ∈ 𝑈 . If 𝑚 < 1, then because 𝑈 is
open in [0, 1], there exists 𝜀 > 0 such that 𝑚 + 𝜀 ∈ 𝑈 , which is impossible since
𝑚 is the supremum of 𝑈 . Therefore 1 ∈ 𝑈 , and similarly 1 ∈ 𝑉 , hence 𝑈 and
𝑉 are not disjoint, contradiction.

Proposition 6.1.8. Let 𝑆 be a connected subspace of a topological space. Then
its closure 𝑆 is connected.

Proof. First, 𝑆 is clearly non-empty, since it contains 𝑆. Let 𝑓 ∶ 𝑆 → 2 be a
continuous function. Since 𝑆 is connected, 𝑓 is constant on 𝑆, with value 𝑢 ∈ 2.
If 𝑥 ∈ 𝑆, by continuity of 𝑓 there is a neighbourhood 𝑁 of 𝑆 such that 𝑓 is
constantly equal to 𝑓(𝑥) on 𝑁 . Now if 𝑎 ∈ 𝑁 ∩ 𝑆, we have 𝑓(𝑥) = 𝑓(𝑎) = 𝑢,
hence 𝑓 is constantly equal to 𝑢 on all of 𝑆.

Proposition 6.1.9. Let (𝐴𝑖)𝑖∈𝐼 be a non-empty collection of connected sub-
spaces of a topological space, and let 𝑋 be their union. Assume that for any two
indices 𝑖, 𝑗, the intersection 𝐴𝑖 ∩ 𝐴𝑗 is non-empty. Then 𝑋 is connected.

Proof. First, 𝑋 is non-empty, since every 𝐴𝑖 is non-empty, and there is at least
one of them. Let 𝑓 ∶ 𝑋 → 2 be a continuous function. For all 𝑖 ∈ 𝐼 , 𝑓|𝐴𝑖 is
constant, hence there is an element 𝑢𝑖 ∈ 2 such that 𝑓(𝑥) = 𝑢𝑖 for all 𝑥 ∈ 𝐴𝑖.
Now, for any two indices 𝑖, 𝑗, let 𝑥 ∈ 𝐴𝑖 ∩ 𝐴𝑗. Then 𝑢𝑖 = 𝑓(𝑥) = 𝑢𝑗, hence the
function 𝑢 ∶ 𝐼 → 2 is constant. It follows that 𝑓 itself is constant.

Lemma 6.1.10. Let 𝑋, 𝑌 be connected topological spaces. Then 𝑋 × 𝑌 is
connected.
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Proof. Since 𝑋 and 𝑌 are non-empty, 𝑋×𝑌 is also non-empty, hence it contains
a point 𝑏 ∶= (𝑥0, 𝑦0).
For 𝑦 ∈ 𝑌 , let 𝐴𝑦 = {𝑥0} × 𝑌 ∪ 𝑋 × {𝑦}. Now, {𝑥0} × 𝑌 is connected, because
it is homeomorphic to 𝑌 , and similarly 𝑋 ×{𝑦} is connected. Their intersection
is {𝑏}, hence 𝐴𝑦 is connected by Proposition 6.1.9.

Clearly, 𝑋 × 𝑌 is the union of the 𝐴𝑦, and since every 𝐴𝑦 contains the point 𝑏,
we can apply Proposition 6.1.9 once more and deduce that 𝑋 × 𝑌 is connected,
as claimed.

Corollary 6.1.11. Let (𝑋𝑖)𝑖∈𝐼 be a family of topological spaces, where 𝐼 is
finite. Then ∏𝑖∈𝐼 𝑋𝑖 is connected.

Proof. By induction, it is enough to show the statement just for the empty and
binary products. The empty product is the terminal space, which is clearly
connected. Connectedness of binary products is Lemma 6.1.10.

Proposition 6.1.12. Let (𝑋𝑖)𝑖∈𝐼 be a family of topological spaces. Then
∏𝑖∈𝐼 𝑋𝑖 is connected if and only if every 𝑋𝑖 is connected.

Proof. Let 𝑋 denote the product of the 𝑋𝑖. If 𝑋 is connected, then 𝜋𝑖(𝑋) is
connected by Proposition 6.1.4, and since 𝑋 is in particular non-empty, 𝜋𝑖(𝑋) =
𝑋𝑖.

For the converse, let 𝐹 be the collection of finite subsets of 𝐼 . By the non-
emptiness of the 𝑋𝑖, there exists a point 𝑏 ∈ 𝑋. For 𝐽 ∈ 𝐹 , let 𝑌𝐽 be the
subset of 𝑋 consisting of those points 𝑥 such that 𝑥𝑖 = 𝑏𝑖 for all 𝑖 ∉ 𝐽 . Clearly,
𝑌𝐽 ≅ ∏𝑗∈𝐽 𝑋𝑗, hence 𝑌𝐽 is connected by Corollary 6.1.11, and clearly 𝑏 ∈ 𝑌𝐽 .

Therefore, 𝑌 = ⋃𝐽∈𝐹 𝑌𝐽 is connected by Proposition 6.1.9. If we now show that
𝑌 is dense in 𝑋, connectedness of 𝑋 will follow from Proposition 6.1.8.

So let 𝑈 be a non-empty open set in 𝑋, and let us show that 𝑈 meets 𝑌 . By
Proposition 4.5.2, we can assume that 𝑈 is a finite intersection of open sets of
the form 𝜋−1

𝑖 (𝑉𝑖) for some 𝑉𝑖 non-empty open in 𝑋𝑖, i.e. there exists a finite
𝐽 ⊆ 𝐼 such that

𝑈 = {𝑥 ∈ 𝑋 | 𝑥𝑗 ∈ 𝑉𝑗 for all 𝑗 ∈ 𝐽}.

Now construct 𝑦 ∈ 𝑋 so that 𝑦𝑗 ∈ 𝑉𝑗 for 𝑗 ∈ 𝐽 , and 𝑦𝑖 = 𝑏𝑖 for 𝑖 ∉ 𝐽 . Then
clearly 𝑦 ∈ 𝑈 ∩ 𝑌 , so 𝑈 meets 𝑌 .

6.2 Path connected spaces
In many cases, connected spaces satisfy a slightly stronger property, which we
now define.

Definition 6.2.1. A topological space 𝑋 is said to be path connected if it is
non-empty, and for all 𝑥, 𝑦 ∈ 𝑋 there exists a continuous function 𝛾 ∶ [0, 1] → 𝑋
such that 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦.
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A continuous function 𝛾 ∶ [0, 1] → 𝑋 is called a path in 𝑋 from 𝛾(0) to 𝛾(1).
Definition 6.2.1 then captures the idea that if we start at any point 𝑥 in 𝑋, we
can always reach any other point by following a continuous path.

Proposition 6.2.2. A path connected space is connected.

Proof. Let 𝑋 be path connected, and let 𝑓 ∶ 𝑋 → 2 be a surjective function.
There exist 𝑥, 𝑦 ∈ 𝑋 such that 𝑓(𝑥) = 0 and 𝑓(𝑦) = 1. By path connectedness,
there exists a path 𝛾 from 𝑥 to 𝑦. Now 𝑓 ∘ 𝛾 is a continuous surjective function
[0, 1] → 2, but [0, 1] is connected by Proposition 6.1.7, so we have reached a
contradiction.

Exercise 58. Let 𝐺 be the set of points of the form (𝑥, sin(1/𝑥)) ∈ ℝ2 with
𝑥 > 0. Show that 𝐺 is connected, but not path connected. [Hint: to show
that 𝐺 is not path connected, let 𝛾 = ⟨𝑥, 𝑦⟩ be a path from say (0, 0) to some
other point (𝑥0, sin(1/𝑥0)) ∈ 𝐺. Let 𝑡0 be the infimum of all 𝑡 ∈ [0, 1] such that
𝑥(𝑡) > 0. Continuity of 𝛾 implies that there exists an interval 𝐼 = [𝑡0, 𝑡1] such
that 𝛾 restricted to 𝐼 is a path in 𝐺 ∩ ℝ × [𝑦(𝑡) − 1/4, 𝑦(𝑡) + 1/4], which is a
disconnected space. Obtain a contradiction.]

Proposition 6.2.3. Every non-empty convex subset 𝑆 of ℝ𝑛 is path connected.

Proof. For any two points 𝑥, 𝑦 ∈ 𝑆, define a path 𝛾 by 𝛾(𝑡) = (1 − 𝑡)𝑥 + 𝑡𝑦.
Then clearly 𝛾 is a path from 𝑥 to 𝑦 in ℝ𝑛, and convexity of 𝑆 guarantees that
𝛾(𝑡) ∈ 𝑆.

Corollary 6.2.4. The spaces ℝ𝑛 and ℂ𝑛 are path connected.

Path connected spaces enjoy many of the closure properties of connected spaces.
As the following propositions show.

Proposition 6.2.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a surjective continuous function between
topological spaces. If 𝑋 is path connected, so is 𝑌 .

Proof. Let 𝑦, 𝑦′ be points in 𝑌 . By surjectivity, there exist points 𝑥, 𝑥′ ∈ 𝑋
such that 𝑓(𝑥) = 𝑦 and 𝑓(𝑥′) = 𝑦′. Let 𝛾 be a path in 𝑋 from 𝑥 to 𝑥′. Then
𝑓 ∘ 𝛾 is a path in 𝑌 between 𝑦 and 𝑦′.

Corollary 6.2.6. A quotient of a path connected space is path connected.

Proposition 6.2.7. Let (𝑋𝑖)𝑖∈𝐼 be a family of path connected spaces. The
product ∏𝑖∈𝐼 𝑋𝑖 is path connected if and only if all the 𝑋𝑖 are path connected.

Proof. Let 𝑋 denote the product of the 𝑋𝑖. If 𝑋 is path connected, then it is
non-empty, hence 𝑋𝑖 = 𝜋𝑖(𝑋) is path connected by Proposition 6.2.5.

Conversely, suppose that every 𝑋𝑖 is path connected, and let 𝑎, 𝑏 be points in
𝑋. For all 𝑖 ∈ 𝐼 , let 𝛾𝑖 be a path in 𝑋𝑖 from 𝑎𝑖 to 𝑏𝑖. Then 𝛾 = ⟨𝛾𝑖⟩𝑖∈𝐼 is a path
in 𝑋 from 𝑎 to 𝑏.
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Paths in a topological space are a very fundamental notion in topology, and
especially in algebraic topology. One of the reasons for their importance is that
they can be concatenated, and concatenation of paths enjoys several important
properties, as we will see later.

Definition 6.2.8. Let 𝑋 be a topological space, let 𝛾 be a path in 𝑋 from 𝑥
to 𝑦 and let 𝜎 be a path from 𝑦 to 𝑧. Define the concatenation of 𝛾 and 𝜎 to be
the path 𝛾 ∗ 𝜎 defined as follows:

(𝛾 ∗ 𝜎)(𝑡) = {𝛾(2𝑡) for 𝑡 ≤ 1/2
𝜎(2𝑡 − 1) for 𝑡 ≥ 1/2.

It follows from Proposition 5.1.4 that 𝛾 ∗𝜎 is continuous, hence it defines a path
from 𝑥 to 𝑧. Intuitively, 𝛾 ∗ 𝜎 is a path that follows 𝛾 at double speed, and then
switches to following 𝜎, also at double speed.

Concatenation of paths allows us to prove the analogous result to Proposi-
tion 6.1.9 for path connectedness.

Proposition 6.2.9. Let (𝐴𝑖)𝑖∈𝐼 be a family of path connected subspaces of a
topological space, and let 𝑋 be their union. Suppose that for all pairs of indices
𝑖, 𝑗, the intersection of 𝐴𝑖 and 𝐴𝑗 is non-empty. Then 𝑋 is path connected.

Proof. Let 𝑋, 𝑌 be two points in 𝑋, with 𝑥 ∈ 𝐴𝑖 and 𝑦 ∈ 𝐴𝑗 for some 𝑖, 𝑗 ∈ 𝐼 .
Let 𝑎 ∈ 𝐴𝑖 ∩ 𝐴𝑗. Now choose paths 𝛾 from 𝑥 to 𝑎, and 𝜎 from 𝑎 to 𝑦. The
concatenation 𝛾 ∗ 𝜎 is then a path from 𝑥 to 𝑦, as required.

6.3 Connected components
Geometric intuition suggests that a space can always be decomposed as a union
of connected “pieces”. This idea can in fact be made precise.

Definition 6.3.1. Let 𝑋 be a topological space. A connected component of 𝑋
is a maximal connected subset of 𝑋.

More explicitly, a subset 𝐶 of 𝑋 is a connected component if it is connected,
and the only connected subset containing 𝐶 is 𝐶 itself. For example, a space 𝑋
is connected if and only if 𝑋 is a connected component of itself.

Components can be used to decompose a space into connected spaces.

Proposition 6.3.2. The connected components of a topological space 𝑋 are
pairwise disjoint, and their union is 𝑋.

Proof. Let 𝐶, 𝐶′ be distinct connected components of 𝑋. If 𝑎 ∈ 𝐶 ∩ 𝐶′, then
by Proposition 6.1.9 𝐶 ∪ 𝐶′ is connected, which violates maximality of 𝐶 (since
𝐶′ ≠ ∅).

Now let 𝑥 ∈ 𝑋 be any point. And let 𝒜 be the collection of connected subsets
of 𝑋 containing 𝑥. Let 𝐶 = ⋃ 𝒜. By Proposition 6.1.9, 𝐶 is connected. If
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𝐶 ⊆ 𝐶′, with 𝐶′ connected, then 𝐶′ contains 𝑥, hence 𝐶′ ∈ 𝒜, and therefore
𝐶′ = 𝐶′, proving that 𝐶 is a connected component. So we have that any point
of 𝑥 belongs to some connected component, as required.

Proposition 6.3.3. A space is connected if and only if it has exactly one
connected component.

Proof. If 𝑋 is connected, then 𝑋 is a connected component, as observed above.
If 𝐶 is any component of 𝑋, then 𝐶 ⊆ 𝑋, hence 𝐶 = 𝑋 by maximality of 𝐶,
hence 𝑋 is the only component.

Conversely, if 𝐶 be the unique component of 𝑋, then 𝑋 = 𝐶 by Proposi-
tion 6.3.2, so 𝑋 is connected.

Proposition 6.3.4. Connected components of a topological space 𝑋 are closed
subsets of 𝑋.

Proof. Let 𝐶 be a connected component of 𝑋. We know from Proposition 6.1.8
that 𝐶 is also connected. But 𝐶 ⊆ 𝐶, hence by maximality 𝐶 = 𝐶, which shows
that 𝐶 is closed.

Corollary 6.3.5. If a topological space 𝑋 has a finite number of connected
components, then its connected components are open.

Proof. If 𝐶 is a connected component of 𝑋, then it follows from Proposition 6.3.2
that the complement of 𝐶 is a finite union of connected components. Since
connected components are closed, the complement of 𝐶 is also closed, hence 𝐶
is open.

Exercise 59. Describe the connected components of ℚ.

There is a completely analogous notion of path connected component, and sim-
ilar results, the proofs of which are left to reader.

Definition 6.3.6. Let 𝑋 be a topological space. A path connected component
of 𝑋 is a maximal path connected subset of 𝑋.

Proposition 6.3.7. The path connected components of a topological space 𝑋
are pairwise disjoint, and their union is 𝑋.

Proposition 6.3.8. A space is path connected if and only if it has exactly one
connected component.

The set of path connected components of a topological space 𝑋 is denoted
𝜋0(𝑋).
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6.4 Examples
Proposition 6.4.1. The sphere 𝑆𝑛 is path connected for all 𝑛 ≥ 1.

Proof. By Proposition 5.4.4, 𝑆𝑛 can be written as a union of subsets homeo-
morphic to 𝐷𝑛. Since 𝐷𝑛 is a convex subset of ℝ𝑛, it is path connected by
Proposition 6.2.3. If 𝑛 ≥ 1, then the two disks have a non-empty intersection,
hence 𝑆𝑛 is path connected by Proposition 6.2.9.

Exercise 60. Generalise Proposition 6.4.1 to the suspension of a non-empty space
𝑋.

Note that 𝑆0 ≅ 1 + 1, hence it is disconnected.

Corollary 6.4.2. Real projective spaces are connected.

Corollary 6.4.3. The torus is connected.

Proposition 6.4.4. ℝ𝑛 is not homeomorphic to ℝ for 𝑛 > 1.

Proof. Suppose 𝜙 ∶ ℝ𝑛 → ℝ is a homeomorphism. Then 𝜙 induces a homeomor-
phism between ℝ𝑛\{0} and ℝ\{𝜙(0)}. But the latter is disconnected, while the
former is path connected.

One way to verify the last assertion is the following: write ℝ𝑛\{0} as the union
𝑈+ ∪ 𝑈−, where 𝑈+ (resp. 𝑈−) is the set of non-zero vectors where the first
coordinate is non-negative (resp. non-positive). Both 𝑈+ and 𝑈− are path
connected, since every point in 𝑈+ (resp. 𝑈−) can be connected with a path
to (1, 0, …, 0) (resp. (−1, 0, …, 0)), and their intersection is homeomorphic to
ℝ𝑛−1 ∖ {0}, hence it is non-empty for 𝑛 > 1.

7 Separation and countability axioms
Even though most of our examples so far have been of subspaces of Euclidean
spaces and some of their quotients, we have seen some instances of topological
spaces that exhibit unfamiliar characteristics, especially if one draws one’s in-
tuition from metric spaces. For example, convergence of sequences can behave
very poorly on general topological spaces, and it does not necessarily capture
the topology of the space.

In this section, we are going to isolate some “well-behavedness” properties of
topological spaces that make them behave more like metric spaces in some
regards. They generally fall into two categories:

• separation axioms express whether it is possible to “separate” points or
closed sets from one another;

• countability axioms express whether the topology on a space can be re-
covered from countable collections of open sets.

49



There are numerous such axioms that have been considered by topologists. Most
of them are only of interest in general topology, and do not often figure in related
areas like algebraic topology or differential geometry. For this reason, we are
going to focus our attention on those properties that have wide applicability.

7.1 Hausdorff spaces
Definition 7.1.1. A topological space 𝑋 is said to be Hausdorff if for all pairs
of distinct points 𝑥, 𝑦 ∈ 𝑋, there exists disjoint (open) neighbourhoods 𝑈 and
𝑉 of 𝑥 and 𝑦 respectively.

We say that a space is Hausdorff if we can separate points by neighbourhoods,
or simply by open sets. The Hausdorff property is by far the most important
and widely used separation axiom, but it exists on a spectrum of increasingly
stronger axioms, with names going from 𝑇0 to 𝑇4.

Definition 7.1.2. Let 𝑋 be a topological space.

𝑋 is 𝑇0 if for all pairs of distinct points 𝑥, 𝑦 ∈ 𝑋, there exists a neighbourhood
of one of the two that does not contain the other.

𝑋 is 𝑇1 if for all pairs of distinct points 𝑥, 𝑦 ∈ 𝑋, there exists a neighbourhood
of 𝑥 that does not contain 𝑦.

𝑋 is 𝑇2 if it is Hausdorff, i.e. all pairs of distinct points have disjoint neighbour-
hoods.

𝑋 is 𝑇3 if it is Hausdorff, and for all closed sets 𝐶 ⊆ 𝑋, and all points 𝑥 ∉ 𝐶,
there exist disjoint open sets 𝑈, 𝑉 , with 𝐶 ⊆ 𝑈 and 𝑥 ∈ 𝑉 .

𝑋 is 𝑇4 if it is Hausdorff, and for all pairs of disjoint closed sets 𝐶, 𝐷 ⊆ 𝑋, there
exist disjoint open sets 𝑈, 𝑉 , with 𝐶 ⊆ 𝑈 and 𝐷 ⊆ 𝑉 .

It is clear that 𝑇𝑖 implies 𝑇𝑗 whenever 𝑖 > 𝑗. A space is said to be regular
if closed sets and points can be separated by open sets, so that a 𝑇3 space is
equivalently a Hausdorff regular space. Similarly, a normal space is one where
disjoint closed sets can be separated by open sets, so that a 𝑇4 space is the same
as a Hausdorff normal space.

The following exercise shows a useful equivalent formulation of the 𝑇1 axiom.

Exercise 61. Show that a topological space 𝑋 is 𝑇1 if and only if its points (or
more precisely those subsets of 𝑋 containing a single point) are closed.

None of the implications 𝑇𝑖+1 ⇒ 𝑇𝑖 are reversible in general. Some of the
counterexamples are easy to find, and they are left as an exercise.

Exercise 62. Find examples of:

• a topological space that is not 𝑇0,
• a 𝑇0 space that is not 𝑇1,
• a 𝑇1 space that is not Hausdorff
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Counterexamples for the other implications are harder to construct. We refer
the interested reader to [1] and [2].

In the following, we will mostly focus on Hausdorff spaces, although the other
separation axioms listed above are sometimes useful to keep in mind.

It is clear that being Hausdorff is invariant under homeomorphism. However,
unlike connectedness, it is not true that the image of a Hausdorff space through
a continuous function is Hausdorff. In fact, any space 𝑋 is the image of the
identity function from 𝑋 itself equipped with the discrete topology, and any
discrete space is clearly Hausdorff.

Proposition 7.1.3. A subspace of a Hausdorff topological space is Hausdorff.

Proof. Let 𝑋 be Hausdorff, and 𝑆 ⊆ 𝑋. If 𝑥, 𝑦 ∈ 𝑆 are distinct points, there
exist disjoint subsets 𝑈, 𝑉 , open in 𝑋, such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 . Now 𝑆 ∩ 𝑈
and 𝑆 ∩ 𝑉 are disjoint, contain 𝑥 and 𝑦 respectively, and are open in 𝑆.

Proposition 7.1.4. If (𝑋𝑖)𝑖∈𝐼 is a family of Hausdorff spaces, the product
𝑋 ∶= ∏𝑖∈𝐼 𝑋𝑖 is Hausdorff.

Proof. If 𝑥, 𝑦 ∈ 𝑋 are distinct points, there exists an index 𝑖 ∈ 𝐼 such that
𝑥𝑖 ≠ 𝑦𝑖. Let 𝑈, 𝑉 be disjoint open neighbourhoods of respectively 𝑥𝑖 and 𝑦𝑖 in
𝑋𝑖. Then 𝜋−1

𝑖 (𝑈) and 𝜋−1
𝑖 (𝑉 ) are disjoint open neighbourhoods of respectively

𝑥 and 𝑦.

Unfortunately, the quotient of a Hausdorff topological space is not in general
Hausdorff. For example, let 𝑋 = 2×ℝ be the coproduct of two copies of the real
line. By Proposition 7.1.4, 𝑋 is Hausdorff. Let ∼ be the equivalence relation
on 𝑋 generated by (0, 𝑥) ∼ (1, 𝑥) for all 𝑥 ≠ 0. The resulting quotient space
𝑋/∼ is called the line with double origin, since it consists of a single copy of all
non-zero points of ℝ, plus two copies of 0.

Proposition 7.1.5. The space 𝐿 = 𝑋/∼ defined above is not Hausdorff.

Proof. Consider the point 𝑎 = 𝜋(0, 0). If 𝑈 is an open set containing 𝑎, then
𝜋−1(𝑈) is open in 2 × ℝ and it contains (0, 0), hence it contains an interval of
the form {0}×]−𝜀, 𝜀[. A similar argument applies to 𝑏 = 𝜋(0, 0). It follows that
every neighbourhood of 𝑎 meets every neighbourhood of 𝑏. Therefore 𝐿 is not
Hausdorff.

However, we will see that we can impose some conditions on an equivalence
relation on a Hausdorff space to make sure that the corresponding quotient is
Hausdorff.

Proposition 7.1.6. A topological space 𝑋 is Hausdorff if and only if the diag-
onal Δ𝑋 ∶= {(𝑥, 𝑥) | 𝑥 ∈ 𝑋} is a closed subset of 𝑋 × 𝑋.

Proof. By simply reformulating the Hausdorff property on 𝑋 in terms of 𝑋 ×𝑋,
we get that 𝑋 is Hausdorff if and only if for all 𝑝 ∈ 𝑋 × 𝑋, if 𝑝 ∉ Δ𝑋, then
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there exists open sets 𝑈, 𝑉 ⊆ 𝑋 such that (𝑈 × 𝑉 ) ∩ Δ𝑋 = ∅. Since open sets
of the form 𝑈 × 𝑉 are a base of the topology on 𝑋 by Proposition 5.2.4, the
latter condition is equivalent to Δ𝑋 being closed, as required.

Proposition 7.1.7. Let 𝑋 be a Hausdorff topological space, and ∼ an equiv-
alence relation on 𝑋. Assume the projection function 𝜋 ∶ 𝑋 → 𝑋/∼ is open.
Then 𝑋/∼ is Hausdorff if and only if 𝑅 = {(𝑥, 𝑦) | 𝑥 ∼ 𝑦} is a closed subset of
𝑋 × 𝑋.

Proof. Let 𝜋2 ∶ 𝑋 × 𝑋 → 𝑋/∼ × 𝑋/∼ be the function defined by 𝜋2(𝑥, 𝑦) =
(𝜋(𝑥), 𝜋(𝑦)). Since 𝜋 is continuous and open, it follows that 𝜋2 is also continuous
and open. By Exercise 26, a subset 𝐶 of 𝑋/∼ × 𝑋/∼ is closed if and only if
𝜋−1

2 (𝐶) is closed in 𝑋 × 𝑋. Now, clearly 𝑅 = 𝜋−1
2 (Δ𝑋/∼), hence the diagonal

is closed in 𝑋/∼ if and only if 𝑅 is closed, and the conclusion follows from
Proposition 7.1.6.

Exercise 63. The real projective spaces are Hausdorff.

The property of a space of being Hausdorff can be directly characterised in
terms of convergence of filters.

Proposition 7.1.8. A space 𝑋 is Hausdorff if and only if every filter has at
most one limit.

Proof. Let ℱ be a filter on a Hausdorff space 𝑋, and assume that ℱ converges
to both ℓ and ℓ′, with ℓ ≠ ℓ′. Let 𝑈, 𝑉 be disjoint open neighbourhoods of ℓ
and ℓ′ respectively. Then 𝑈 ∈ ℱ and 𝑉 ∈ ℱ, hence ∅ = 𝑈 ∩ 𝑉 ∈ ℱ, which is a
contradiction.

Conversely, assume that 𝑋 is not Hausdorff. Then there exist distinct points
ℓ, ℓ′ ∈ 𝑋 such that every neighbourhood of ℓ intersects every neighbourhood of
ℓ′. It follows that 𝒩(ℓ) ∪ 𝒩(ℓ′) has the finite intersection property, hence it is
contained in a filter ℱ, which then converges to both ℓ and ℓ′.

7.2 First and second countability
If 𝑋 is a metric space, and 𝑥 ∈ 𝑋, then every neighbourhood of 𝑥 contains a
ball with a radius 𝑟 ∈ ℚ. Since the set of rationals is countable, this simply
observation usually allows us to express many topological properties of metric
spaces using only countable collections.

We can abstract this feature of metric spaces into a general definition.

Definition 7.2.1. Let 𝑋 be a topological space, and 𝑥 ∈ 𝑋. A system of
neighbourhoods of 𝑥 is a collection 𝒰 of neighbourhoods of 𝑥 such that every
neighbourhood of 𝑥 contains an element of 𝒰.

So balls centred in 𝑥 with rational radius (or even with radius of the form say
2−𝑛 for 𝑛 ∈ ℕ) form a system of neighbourhoods of 𝑥 in any metric space.
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Definition 7.2.2. A topological space 𝑋 is said to be first countable if every
point of 𝑋 admits a countable system of neighbourhoods.

Proposition 7.2.3. A metric space is first countable.

Proof. Immediate consequence of the above observation.

Exercise 64. Let 𝑋 be an uncountable set equipped with the cofinite topology.
Show that 𝑋 is not first countable.

First countability is a property which can be checked one point at a time, and
it does not say much about the topology of a space as a whole. Therefore, we
introduce a new, stronger, notion.

Definition 7.2.4. A topological space 𝑋 is said to be second countable if 𝑋
has a countable base of open sets.

Proposition 7.2.5. A second countable topological space 𝑋 is first countable.

Proof. Let ℬ be a countable base for the topology of 𝑋. For any point 𝑥 ∈ 𝑋,
let ℬ𝑥 be the set of elements of ℬ that contain 𝑥. Clearly, ℬ𝑥 is a system of
neighbourhoods of 𝑥, and it is also countable, since it is a subset of ℬ.

Exercise 65. Prove that a discrete space is second countable if and only if its
underlying set is countable.

Note that metric spaces are not necessarily second countable. For example, let
𝑋 be any uncountable set equipped with the metric 𝑑 defined by 𝑑(𝑥, 𝑦) = 1 for
𝑥 ≠ 𝑦. Then the topology on 𝑋 induced by this metric is discrete (Exercise 5),
hence 𝑋 cannot be second countable by Exercise 65. On the other hand, metric
spaces are always first countable by Proposition 7.2.3.

8 Compactness
8.1 Definition and basic properties
Recall that an open cover of a topological space 𝑋 is a family of open sets
𝒰 = (𝑈𝑖)𝑖∈𝐼 such that the union of the 𝑈𝑖 is 𝑋. A subset 𝐽 ⊆ 𝐼 determines a
new cover (𝑈𝑗)𝑗∈𝐽 , which will be referred to as a subcover of 𝒰.

The reader is likely familiar with the notion of compactness for subsets of ℝ𝑛,
where a subset 𝐶 is called compact if it is closed and bounded. We will now
give a general and intrinsic definition of compactness. By general we mean that
it makes sense for arbitrary spaces, and by intrinsic we mean that, unlike the
definition above, it does not refer to some larger “ambient” space.

Definition 8.1.1. A topological space 𝑋 is said to compact if all open covers
of 𝑋 have a finite subcover.
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It is not immediately obvious that this definition specialises to the one for subsets
of ℝ𝑛. Proving this fact will be one of the goals of this section.

Proposition 8.1.2. A closed subspace of a compact topological space is compact.

Proof. Let 𝐶 be a closed subset of a topological space 𝑋. To show that 𝐶 is
compact, let 𝒰 = (𝑈𝑖)𝑖∈𝐼 be an open cover of 𝐶. By definition of subspace
topology, there is a family (𝑉𝑖)𝑖∈𝐼 of open sets in 𝑋 such that 𝑈𝑖 = 𝑉𝑖 ∩ 𝐶.
Therefore, the 𝑉𝑖 together with 𝑋 ∖ 𝐶 form a cover of 𝑋, so by compactness
there exists a finite 𝐽 ⊆ 𝐼 such that (𝑉𝑗)𝑗∈𝐽 ∪ (𝑋 ∖ 𝐶) is a cover of 𝑋. It follows
that (𝑈𝑗)𝑗∈𝐽 is a finite subcover of 𝒰, as required.

Proposition 8.1.3. A compact subspace of a Hausdorff space is closed.

Proof. Let 𝐾 be a compact subspace of a topological space 𝑋, and assume that
𝑋 is Hausdorff. To show that 𝑋 ∖ 𝐾 is open, we fix a point 𝑥 ∉ 𝐾, and show
that there is a neighbourhood of 𝑥 which is disjoint from 𝐾. For 𝑦 ∈ 𝐾, let
𝑈𝑦, 𝑉𝑦 be disjoint neighbourhoods of 𝑥 and 𝑦 respectively. Clearly,

𝐾 ⊆ ⋃
𝑦∈𝐾

𝑉𝑦,

hence there exists a finite 𝐽 ⊆ 𝐾 such that the 𝑉𝑦, for 𝑦 ∈ 𝐾, cover 𝐾. Let
𝑊 = ⋂𝑦∈𝐽 𝑈𝑦. Since 𝐽 is finite, 𝑊 is a neighbourhood of 𝑥, and

𝑊 ∩ 𝐾 ⊆ 𝑊 ∩ ⋃
𝑦∈𝐽

𝑉𝑦 ⊆ ⋃
𝑦∈𝐽

𝑊 ∩ 𝑉𝑦 ⊆ ⋃
𝑦∈𝐽

𝑈𝑦 ∩ 𝑉𝑦 = ∅.

Proposition 8.1.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a surjective continuous function, where
𝑋 is a compact topological space. Then 𝑌 is compact.

Proof. Let 𝒰 = (𝑈𝑖)𝑖∈𝐼 be an open cover of 𝑌 . By continuity of 𝑓 , the family
(𝑓−1(𝑈𝑖))𝑖∈𝐼 is an open cover of 𝑋, from which we can extract a finite subcover
indexed by say 𝐽 ⊆ 𝐼 . Now

⋃
𝑗∈𝐽

𝑈𝑗 = 𝑓 (𝑓−1 (⋃
𝑗∈𝐽

𝑈𝑗)) = 𝑓 (⋃
𝑗∈𝐽

𝑓−1(𝑈𝑗)) = 𝑓(𝑋) = 𝑌 ,

so 𝐽 determines a finite subcover of 𝒰.

Corollary 8.1.5. A quotient of a compact topological space is compact.

Corollary 8.1.6. Compactness is invariant under homeomorphism.

Putting together the basic facts about compact spaces proved above, we can
finally prove the result about bijective continuous functions which we have been
using numerous times in previous examples.
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Proposition 8.1.7. Let 𝑋 be a compact space, 𝑌 a Hausdorff space. If 𝑓 ∶
𝑋 → 𝑌 is a continuous function, then 𝑓 is closed.

Proof. Let 𝐶 be closed in 𝑋. By Proposition 8.1.2, 𝐶 is compact. Therefore,
𝑓(𝐶) is compact by Proposition 8.1.4. Finally, 𝑓(𝐶) is closed in 𝑌 by Proposi-
tion 8.1.3.

Corollary 8.1.8. Let 𝑋 be a compact space, 𝑌 a Hausdorff space. If 𝑓 ∶ 𝑋 → 𝑌
is a continuous bijective function, then 𝑓 is a homeomorphism.

Proof. By Proposition 8.1.7, 𝑓 is closed, therefore 𝑓 is a homeomorphism by
Proposition 3.3.7.

Proposition 8.1.9. Let (𝑋𝑖)𝑖∈𝐼 be a finite family of compact spaces. Then the
coproduct 𝑋 ∶= ∐𝑖∈𝐼 𝑋𝑖 is compact.

Proof. Let (𝑈𝑗)𝑗∈𝐽 be an open cover of 𝑋, and let 𝜄𝑖 ∶ 𝑋𝑖 → 𝑋 denote the
coproduct injections. Then for all 𝑖 ∈ 𝐼 , the family (𝜄−1

𝑖 (𝑈𝑗))𝑗∈𝐽 is an open
cover of 𝑋𝑖, hence by compactness we can find a finite subset 𝐹𝑖 of 𝐽 such that
the 𝑖−1

𝑖 (𝑈𝑗) cover 𝑋𝑖 for 𝑗 ∈ 𝐹𝑖, hence in particular

⋃
𝑗∈𝐹𝑖

𝑈𝑗 ⊇ 𝜄𝑖(𝑋𝑖).

It follows that 𝐹 ∶= ⋃𝑖∈𝐼 𝐹𝑖 determines a subcover of 𝑋, and 𝐹 is finite because
𝐼 and the 𝐹𝑖 are.

Corollary 8.1.10. Let (𝐾𝑖)𝑖∈𝐼 be a finite collection of compact subspaces of a
topological space 𝑋. Then the union 𝐾 ∶= ⋃𝑖∈𝐼 𝐾 is compact.

Proof. The space 𝐾 is the image of the map ∐𝑖∈𝐼 𝐾𝑖 → 𝑋 induced by the
inclusion functions 𝐾𝑖 → 𝑋. Since ∐𝑖∈𝐼 𝐾𝑖 is compact by Proposition 8.1.9, it
follows that 𝐾 is compact by Proposition 8.1.4.

To prove that a space is compact, it is sometimes useful to be able to shrink the
open sets of a cover when constructing a finite subcover. In order to make this
precise, we introduce the notion of refinement.

Definition 8.1.11. Let 𝒜 = (𝐴𝑖)𝑖∈𝐼 be a cover of a set 𝑋. A refinement of 𝒜
is a cover ℬ = (𝐵𝑗)𝑗∈𝐽 such that for all 𝑗 ∈ 𝐽 there exists 𝑖 ∈ 𝐼 with 𝐵𝑗 ⊆ 𝐴𝑖.

In other words, a refinement of a cover is a cover obtained by replacing some
of the elements of the original cover with smaller ones, and possibly removing
some altogether. In particular, a subcover is a refinement.

Lemma 8.1.12. A topological space 𝑋 is compact if and only if every open
cover of 𝑋 admits a finite refinement.
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Proof. Since, as observed above, every subcover is a refinement, one direction
is obvious. For the converse, let 𝒰 = (𝑈𝑖)𝑖∈𝐼 be an open cover of 𝑋, and
suppose that it has a finite refinement (𝑉𝑗)𝑗∈𝐽 . For all 𝑗 ∈ 𝐽 , let 𝑘(𝑗) be such
that 𝑉𝑗 ⊆ 𝑈𝑘(𝑗), and observe that the family (𝑈𝑘(𝑗))𝑗∈𝐽 is a subcover of 𝒰, as
required.

Lemma 8.1.13. Let 𝑋 be a topological space, and ℬ be a base of the topology
of 𝑋. Then 𝑋 is compact if and only if all covers of 𝑋 consisting of elements
of ℬ admit a finite subcover.

Proof. If 𝑋 is compact, then it clearly also satisfies the compactness condition
on covers consisting of elements of ℬ. Conversely, let 𝒰 = (𝑈𝑖)𝑖∈𝐼 be an arbitrary
cover. For all 𝑖 ∈ 𝐼 , write 𝑈𝑖 as

⋃
𝑗∈𝐽𝑖

𝑉𝑗,

for some set 𝐽𝑖, and some 𝑉𝑗 ∈ ℬ. Then 𝒱 = (𝑉𝑗) 𝑖∈𝐼
𝑗∈𝐽𝑖

is a refinement of
𝒰 consisting of elements of ℬ. By the assumption on 𝑋, the cover 𝒱 has a
finite subcover, which is therefore a finite refinement of 𝒰. It then follows from
Lemma 8.1.12 that 𝑋 is compact.

Proposition 8.1.14. Let 𝑋 and 𝑌 be compact topological spaces. Then 𝑋 × 𝑌
is compact.

Proof. Fix a cover 𝒰 of 𝑋 × 𝑌 . By Lemma 8.1.13, we can assume that 𝒰 is of
the form (𝑈𝑖 × 𝑉𝑖)𝑖∈𝐼 , where the 𝑈𝑖 (resp. 𝑉𝑖) are open in 𝑋 (resp. 𝑌 ).

For 𝑥 ∈ 𝑋, let 𝐽𝑥 be a finite subset of 𝐼 such that

{𝑥} × 𝑌 ⊆ ⋃
𝑗∈𝐽𝑥

𝑈𝑗 × 𝑉𝑗;

this exists because {𝑥}×𝑌 is homeomorphic to 𝑌 , hence compact. In particular,

𝑌 = ⋃
𝑗∈𝐽𝑥

𝑉𝑗.

Let 𝑊𝑥 = ⋂𝑗∈𝐽𝑥
𝑈𝑗. Clearly 𝑥 ∈ 𝑊𝑥, hence (𝑊𝑥)𝑥∈𝑋 is an open cover of 𝑋. By

compactness, there exists a finite 𝐾 ⊆ 𝑋 such that

𝑋 = ⋃
𝑥∈𝐾

𝑊𝑥.

Now, if 𝐽 ′ = ⋃𝑥∈𝐾 𝐽𝑥, we have:

⋃
𝑗∈𝐽′

𝑈𝑗 × 𝑉𝑗 = ⋃
𝑥∈𝐾

⋃
𝑗∈𝐽𝑥

𝑈𝑗 × 𝑉𝑗 ⊇ ⋃
𝑥∈𝐾

𝑊𝑥 × ( ⋃
𝑗∈𝐽𝑥

𝑉𝑗) = ⋃
𝑥∈𝐾

𝑊𝑥 × 𝑌 = 𝑋 × 𝑌 ,

and we have found a finite subcover of 𝒰.
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Corollary 8.1.15. A finite product of compact topological spaces is compact.

Proof. Immediate by induction from Proposition 8.1.14 and the fact that the
terminal space is compact.

Proposition 8.1.16. The closed interval [0, 1] is compact.

Proof. Let (𝑈𝑖)𝑖∈𝐼 be an open cover of [0, 1], and let 𝑆 be the set of points
𝑥 ∈ [0, 1] such that [0, 𝑥] is covered by a finite subset of the 𝑈𝑖.

Clearly 𝑆 is non-empty, because certainly 0 ∈ 𝑆, hence 𝑆 has a supremum 𝑚.
We want to show that 𝑚 = 1.

If that is not the case, let 𝑖 ∈ 𝐼 such that 𝑚 ∈ 𝑈𝑖, and let 𝜀 > 0 be such that
𝑚 + 𝜀 ∈ 𝑈𝑖. Since clearly 𝑚 ∈ 𝑆, there must be a point 𝑚′ ∈ 𝑈𝑖 ∩ 𝑆, so let
𝐽 ⊆ 𝐼 be a finite set such that (𝑈𝑗)𝑗∈𝐽 is a cover of [0, 𝑚′]. It then follows that
𝐽 ∪ {𝑖} determines a finite cover of [0, 𝑚 + 𝜀], hence 𝑚 + 𝜀 ∈ 𝑆, contradicting
the fact that 𝑚 is the supremum of 𝑆.

Proposition 8.1.17. Let 𝐾 be a compact subset of ℝ. Then 𝐾 is bounded.

Proof. Clearly,
(]𝑥 − 1, 𝑥 + 1[∩𝐾)𝑥∈𝐾

is an open cover of 𝐾, so by compactness of 𝐾, there exists a finite 𝐽 ⊆ 𝐾 such
that

𝐾 ⊆ ⋃
𝑥∈𝐽

]𝑥 − 1, 𝑥 + 1[.

If 𝑎, 𝑏 are respectively the minimum and maximum element of 𝐽 , it follows that
𝐾 ⊆ [𝑎 − 1, 𝑏 + 1], hence it is bounded.

Corollary 8.1.18. Let 𝑋 be a compact topological space, and 𝑓 ∶ 𝑋 → ℝ a
continuous function. Then 𝑓 is bounded.

Proof. Immediate consequence of Proposition 8.1.17 and Proposition 8.1.4.

Proposition 8.1.19. A subset of ℝ𝑛 is compact if and only if it is closed and
bounded.

Proof. If 𝐶 is a closed and bounded subset of ℝ𝑛, then it is homeomorphic
to a closed subspace of a cube [0, 1]𝑛, which is compact by Corollary 8.1.15.
Therefore, 𝐶 is compact by Proposition 8.1.2.

Conversely, let 𝐶 be a compact subspace of ℝ𝑛. Then 𝐶 is closed by Propo-
sition 8.1.3. Finally, the norm function ‖ − ‖ ∶ 𝐶 → ℝ𝑛 is continuous, hence
bounded by Corollary 8.1.18, which means that 𝐶 itself is bounded.
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8.2 Examples
Proposition 8.2.1. The spheres 𝑆𝑛 and the disks 𝐷𝑛 are compact spaces.

Proof. Immediate consequence of Proposition 8.1.19.

Corollary 8.2.2. The torus is compact.

Proof. The torus is a product of compact spaces, hence compact by Proposi-
tion 8.1.14.

Corollary 8.2.3. The real projective spaces are compact.

Proof. Regard ℝ𝑃 𝑛 as a quotient of 𝑆𝑛, then apply Corollary 8.1.5.

Using compactness, we can already show that many pairs of spaces are not
homeomorphic. For example:

Proposition 8.2.4. No sphere is homeomorphic to an open subset of ℝ𝑛.

Proof. Spheres are compact, but it follows from Proposition 8.1.19 that the only
compact open subset of ℝ𝑛 is the empty set.

8.3 Compactness and sequences
The reader may be familiar with a different definition of compactness, given in
terms of sequences. As we will see, this definition is equivalent to the general
notion of compactness of Definition 8.1.1 in the case of metric spaces, but the
two notions disagree for general topological spaces.

Recall that, given a sequence 𝑥 ∶ ℕ → 𝑋, and a strictly increasing function
𝑘 ∶ ℕ → ℕ, the composition 𝑥 ∘ 𝑘 ∶ ℕ → 𝑋 is new sequence, which is said to be
a subsequence of 𝑥.

Definition 8.3.1. A space is said to be sequentially compact if every sequence
in 𝑋 admits a convergent subsequence.

It is not too surprising that, without some countability assumption, sequential
compactness and compactness cannot be directly compared, and we will look at
examples showing that neither of the two notions implies the other in general.
However, for first countable spaces, we can show that compactness is stronger
than sequential compactness.

Lemma 8.3.2. Let ℓ be a point with a countable system of neighbourhoods in
a topological space 𝑋. A sequence 𝑥 has a subsequence which converges to ℓ if
and only if for all neighbourhoods 𝑁 of ℓ, the sequence 𝑥 is frequently in 𝑁 .

Proof. Suppose first that 𝑥 ∘ 𝑘 → ℓ for some strictly increasing function 𝑘 ∶
ℕ → ℕ. Then for all neighbourhoods 𝑁 of ℓ, 𝑥 ∘ 𝑘 is eventually in 𝑁 , which
immediately implies that 𝑥 is frequently in 𝑁 .
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Conversely, let (𝑉𝑛)𝑛 be a countable system of neighbourhoods of ℓ. By replacing
𝑉𝑛 with 𝑉1 ∩ ⋯ ∩ 𝑉𝑛, we can assume that 𝑉𝑛 ⊇ 𝑉𝑛+1 for all 𝑛. Our goal is to
construct a subsequence 𝑦 of 𝑥 such that for all neighbourhoods 𝑁 of ℓ, 𝑦 is
eventually in 𝑁 . To that end, we have to define a strictly monotone function
𝑘 ∶ ℕ → ℕ, and we do so by induction.

As induction hypothesis, assume we have defined 𝑘(𝑖) for 𝑖 < 𝑛. By assumption,
𝑥 is frequently in 𝑉𝑛, hence there exists 𝑚 ≥ 𝑘(𝑛 − 1) + 1 such that 𝑥𝑚 ∈ 𝑉𝑛.
Therefore, we set 𝑘(𝑛) ∶= 𝑚. This produces a function 𝑘 which is strictly
monotone by construction. Now let 𝑦 = 𝑥 ∘ 𝑘. For any fixed 𝑛 ∈ ℕ, we have
𝑦𝑖 = 𝑥𝑘(𝑖) ∈ 𝑉𝑖 ⊆ 𝑉𝑛, hence in particular 𝑦 is eventually in 𝑉𝑛. Since the 𝑉𝑛
form a system of neighbourhoods of ℓ, it follows that 𝑦 satisfies the required
property.

Proposition 8.3.3. A first countable compact topological space is sequentially
compact.

Proof. Let 𝑋 be a first countable compact topological space, and suppose by
contradiction that there exists a sequence 𝑢 in 𝑋 with no convergent subse-
quence. By Lemma 8.3.2, every point 𝑥 ∈ 𝑋 has a neighbourhood 𝑈𝑥 such that
it is not the case that 𝑢 is frequently in 𝑈𝑥, or in other words, 𝑢 is eventually
in the complement of 𝑈𝑥.

By compactness, there exists a finite 𝐽 ⊆ 𝑋 such that

𝑋 = ⋃
𝑥∈𝐽

𝑈𝑥.

Let 𝑛𝑥 be such that 𝑢𝑚 ∉ 𝑈𝑥 for 𝑚 ≥ 𝑛𝑥. Then for 𝑚 ≥ max𝑥∈𝐽 𝑛𝑥 we have
𝑥𝑚 ∉ ⋃𝑥∈𝐽 𝑈𝑥 = 𝑋, which is clearly a contradiction.

To see why the first countability assumption is necessary, let us consider the
space

𝑋 ∶= ∏
𝑡∈2ℕ

2,

where 2 denotes a discrete space with 2 elements, and 2ℕ is the set of functions
ℕ → 2. There is a “canonical” sequence 𝑥 = (𝑥𝑛)𝑛∈ℕ in 𝑋, defined as follows:

𝑥𝑛
𝑡 = 𝑡(𝑛).

It is easy to see that 𝑥 does not have any convergent subsequence. For if there
exists a strictly increasing 𝑘 ∶ ℕ → ℕ such that 𝑥 ∘ 𝑘 converges to some ℓ ∈ 𝑋,
then in particular the sequence (𝑥𝑘(𝑛)

𝑡 )
𝑛∈ℕ

should converge for any 𝑡 ∶ ℕ → 2.
But if we choose 𝑡 such that 𝑡(𝑛) = 1 if 𝑛 is of the form 𝑘(2𝑚) for some 𝑚,
and 𝑡(𝑛) = 0 otherwise, then the resulting sequence alternates between 0 and 1,
hence it does not converge.
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We have therefore proved that the space 𝑋 is not sequentially compact. How-
ever, it will follow from Tychonoff’s theorem (Theorem 8.4.10) that 𝑋 is com-
pact.

The following exercise shows that sequential compactness does not imply com-
pactness even for first countable spaces.

Exercise 66. Show that the first uncountable ordinal 𝜔1, with the order topology,
is first countable and sequentially compact, but not compact.

To get compactness from sequential compactness, we need to strengthen the
countability assumption.

Proposition 8.3.4. Let 𝑋 be a second countable sequentially compact topolog-
ical space. Then 𝑋 is compact.

Proof. By Lemma 8.1.13, it is enough to show that every countable open cover
has a finite subcover. Suppose by contradiction that there exists a countable
open cover (𝑈𝑛)𝑛∈ℕ with no finite subcover, and let 𝑥𝑛 be a point in the com-
plement of ⋃𝑖<𝑛 𝑈𝑖. Let 𝑥 = (𝑥𝑛)𝑛∈ℕ be the resulting sequence, and 𝑘 ∶ ℕ → ℕ
a strictly increasing function such that 𝑥 ∘ 𝑘 converges to a point ℓ ∈ 𝑋.

If 𝑚 ∈ ℕ is such that ℓ ∈ 𝑈𝑚, then 𝑥 ∘ 𝑘 is eventually in 𝑈𝑚, which implies that
𝑥 is frequently in 𝑈𝑚. In particular, there exists 𝑛 ≥ 𝑚 such that 𝑥𝑛 ∈ 𝑈𝑚,
which contradicts the defining property of 𝑥𝑛.

Thanks to Proposition 8.3.3 and Proposition 8.3.4, we can show that sequential
compactness and compactness are equivalent for metric spaces.

Lemma 8.3.5. Let 𝑋 be a sequentially compact metric space. Then for all
𝜀 > 0, there exists a finite subset 𝑆 of 𝑋 such that

𝑋 = ⋃
𝑥∈𝑆

𝐵𝜀(𝑥).

Proof. Fix 𝜀 > 0, and assume by contradiction that 𝑋 cannot be covered by
finitely many balls of radius 𝜀. By induction, we can construct a sequence
(𝑥𝑛)𝑛∈ℕ such that

𝑥𝑛 ∉ ⋃
𝑖<𝑛

𝐵𝜀(𝑥𝑖).

Now let 𝑘 ∶ ℕ → ℕ be a strictly increasing function such that 𝑥 ∘ 𝑘 converges to
a point ℓ ∈ 𝑋. Let 𝑛0 ∈ ℕ be such that 𝑑(𝑥𝑘(𝑛), ℓ) < 𝜀/2 for 𝑛 ≥ 𝑛0. Then

𝑑(𝑥𝑘(𝑛), 𝑥𝑘(𝑛+1)) ≤ 𝑑(𝑥𝑘(𝑛), ℓ) + 𝑑(𝑥𝑘(𝑛+1), ℓ) < 𝜀/2 + 𝜀/2 = 𝜀,

which means that 𝑥𝑘(𝑛+1) ∈ 𝐵𝜀(𝑥𝑘(𝑛)), contradiction.

Proposition 8.3.6. Let 𝑋 be a metric space. Then 𝑋 is compact if and only
if it is sequentially compact.
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Proof. Since metric spaces are first countable, it follows from Proposition 8.3.3
that compactness implies sequential compactness for metric spaces.

For the converse, thanks to Proposition 8.3.4, it is enough to show that if a
metric space 𝑋 is sequentially compact, then it is second countable. For all
𝑛 ∈ ℕ, let 𝑆𝑛 be a finite subset of 𝑋 such that 𝑋 is covered by the family
of balls of radius 2−𝑛 with centres in 𝑆𝑛, as given by Lemma 8.3.5. Define a
collection of open sets ℬ as follows:

ℬ = {𝐵2−𝑛(𝑦) | 𝑛 ∈ ℕ, 𝑦 ∈ 𝑆𝑛}.

Clearly ℬ is countable, so it remains to show that it generates the topology
on 𝑋. If 𝐵𝑟(𝑥) is an arbitrary ball, it is enough to find an element of ℬ that
contains 𝑥 and is contained in 𝐵𝑟(𝑥). To that end, choose 𝑛 such that 2−𝑛 < 𝜀/2.
Now, if 𝑦 ∈ 𝑆𝑛 is such that 𝑑(𝑥, 𝑦) < 2−𝑛, then clearly 𝑥 ∈ 𝐵2−𝑛(𝑦) ⊆ 𝐵𝑟(𝑥), as
required.

8.4 Compactness and filters
We have seen that compactness can be characterised in terms of convergence of
sequences, but only for metric spaces. Using filters, we can obtain a characteri-
sation of compactness based on convergence that works for arbitrary topological
spaces. First, we reformulate compactness using closed sets, simply by “dualis-
ing” the definition.

Proposition 8.4.1. A topological space 𝑋 is compact if and only if every
collection of closed sets in 𝑋 with the finite intersection property has non-empty
intersection.

Proof. Observe that open covers on a topological space 𝑋 are in bijective cor-
respondence with collections of closed sets with empty intersection. The corre-
spondence works by assigning to a cover 𝒰 the collection of the complements of
the open sets of 𝒰. Using this bijection, one can see that 𝑋 is compact if and
only if every collection of closed sets with empty intersection admits a finite
subcollection with empty intersection.

By taking the contra-positive, we get that a space is compact if and only if for
every collection of open sets such that every finite subcollection has non-empty
intersection, the whole collection has non-empty intersection, which is exactly
the statement that we want to prove.

Proposition 8.4.2. A topological space 𝑋 is compact if and only if every filter
on 𝑋 is contained in a convergent filter.

Proof. Let ℱ be a filter on a compact space 𝑋, and let 𝒜 be the collection
of closed subsets of 𝑋 that belong to ℱ. Since ℱ has the finite intersection
property, so does 𝒜, hence by compactness of 𝑋 there exists ℓ ∈ 𝑋 which is
contained in all the elements of 𝒜. To show that ℱ is contained in a filter that
converges, by Proposition 4.6.5 it is enough to show that for all neighbourhoods
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𝑁 of ℓ, and all 𝐴 ∈ ℱ, we have 𝑁 ∩𝐴 ≠ ∅. By contradiction, suppose 𝑁 ∩𝐴 = ∅.
Then in particular 𝑈 ∩ 𝐴 = ∅ for some open neighbourhood 𝑈 of ℓ, from which
it follows that 𝑈 ∩ 𝐴 = ∅. But 𝐴 ∈ 𝒜, hence ℓ ∈ 𝐴, which is a contradiction.

Conversely, let 𝒜 be a collection of closed sets with the finite intersection prop-
erty, and let ℱ be a filter containing 𝒜. By the assumption on 𝑋, ℱ (hence
𝒜) is contained in filter that converges to a point ℓ ∈ 𝑋, therefore in particu-
lar every neighbourhood of ℓ meets every element of 𝒜. It follows that for all
𝐶 ∈ 𝒜, we have ℓ ∈ 𝐶 = 𝐶, which means that the intersection of 𝒜 contains ℓ,
hence it is non-empty.

Because the formulation of compactness in terms of filters is based on enlarging
a filter to a convergent one, it is sometimes useful to work with filters that are
“maximal”. This idea is captured by the following definition.

Definition 8.4.3. Let 𝑋 be a set. An ultrafilter on 𝑋 is a maximal filter on
𝑋, i.e. a filter ℱ such that for all filters 𝒢 on 𝑋, if ℱ ⊆ 𝒢 then ℱ = 𝒢.

Exercise 67. Let 𝑥 ∈ 𝑋. Prove that the collection of subsets of 𝑋 that contain
𝑥 is an ultrafilter on 𝑋.

The ultrafilter defined in Exercise 67 is called a principal ultrafilter. It turns out
that principal ultrafilters are the only examples of ultrafilters that can in some
sense be “explicitly” defined. However, existence of non-principal ultrafilters
can indeed be derived in a sufficiently powerful set theory, as the following
proposition shows.

Proposition 8.4.4. Every filter is contained in an ultrafilter.

Proof. Let ℱ be a filter on a set 𝑋. The set of filters containing ℱ is clearly
non-empty, and it is clear that the union of a totally ordered family of filters
is a filter. Therefore, Zorn’s lemma implies that there is a maximal filter 𝒢
containing ℱ, and 𝒢 is a ultrafilter by construction.

Corollary 8.4.5. Let 𝑋 be an infinite set. Then there exist non-principal
ultrafilters on 𝑋.

Proof. Let ℱ be the filter of cofinite subsets of 𝑋, and let 𝒢 be an ultrafilter
containing ℱ. If 𝒢 is principal, then it contains {𝑥} for some 𝑥 ∈ 𝑋, hence its
complement cannot be in 𝒢 even though it is cofinite.

Exercise 68. Prove that every ultrafilter on a finite set is principal.

Exercise 69. Show that a filter ℱ on a set 𝑋 is an ultrafilter if and only if, for
all 𝐴 ⊆ 𝑋, either 𝐴 ∈ ℱ or 𝑋 ∖ 𝐴 ∈ ℱ.

Proposition 8.4.6. Let ℱ an ultrafilter on a set 𝑋, and let 𝑓 ∶ 𝑋 → 𝑌 be any
function. Then the filter 𝑓∗(ℱ) is an ultrafilter on 𝑌 .
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Proof. Let 𝐵 ⊆ 𝑌 , and assume 𝐵 ∉ 𝑓∗(ℱ). Then 𝑓−1(𝐵) ∉ ℱ, hence 𝑋 ∖
𝑓−1(𝐵) ∈ ℱ, by Exercise 69. But 𝑋∖𝑓−1(𝐵) = 𝑓−1(𝑌 ∖𝐵), hence 𝑌 ∖𝐵 ∈ 𝑓∗(ℱ).
The conclusion then follows from Exercise 69 again.

Corollary 8.4.7. A topological space 𝑋 is compact if and only if every ultrafilter
in 𝑋 converges.

Proof. Let 𝑋 be compact, and ℱ an ultrafilter on 𝑋. Then ℱ ⊆ 𝒢, where 𝒢 is
a convergent filter. But ℱ is maximal, hence ℱ = 𝒢, so ℱ is convergent.

Conversely, let ℱ be a filter on 𝑋. There is an ultrafilter 𝒢 containing ℱ by
Proposition 8.4.4, and 𝒢 is a convergent filter by the assumption on 𝑋.

Proposition 8.4.8. A topological space 𝑋 is Hausdorff if and only if every
ultrafilter in 𝑋 has at most one limit.

Proof. If 𝑋 is Hausdorff, then every filter on 𝑋 has at most one limit by Propo-
sition 7.1.8, hence in particular every ultrafilter.

Conversely, suppose every ultrafilter has at most one limit. If ℱ is any filter on
𝑋, then ℱ ⊆ 𝒢 for some ultrafilter 𝒢 on 𝑋. If ℱ converges to ℓ, ℓ′ ∈ 𝑋, then
also 𝒢 converges to ℓ and ℓ′, hence ℓ = ℓ′ by the assumption on 𝑋.

Corollary 8.4.9. A topological space 𝑋 is compact and Hausdorff if and only
if every ultrafilter in 𝑋 has a unique limit.

Using the characterisation of compactness in terms of ultrafilters, we can now
prove a general statement about compactness of products topological spaces.
To appreciate why the formulation in terms of ultrafilters is useful, the reader is
encouraged to try to prove this result directly using the definition of compactness
in terms of open covers.

Theorem 8.4.10. Let (𝑋𝑖)𝑖∈𝐼 be a family of compact topological spaces. Then
the product 𝑋 ∶= ∏𝑖∈𝐼 𝑋𝑖 is compact.

Proof. Let ℱ be an ultrafilter on 𝑋. Then (𝜋𝑖)∗(ℱ) is an ultrafilter on 𝑋𝑖 by
Proposition 8.4.6, hence it converges to some 𝑥𝑖 ∈ 𝑋𝑖. Let 𝑥 = (𝑥𝑖)𝑖∈𝐼 be the
resulting point of 𝑋. To show that ℱ converges to 𝑥, it is enough to show that ℱ
contains neighbourhoods of 𝑥 of the form 𝜋−1

𝑖 (𝑈𝑖), where 𝑈𝑖 is a neighbourhood
of 𝑥𝑖 in 𝑋𝑖. But we know that 𝑈𝑖 ∈ (𝜋𝑖)∗(ℱ), which means that 𝜋−1

𝑖 (𝑈𝑖) ∈ ℱ,
as required.

8.5 One-point compactification
It is possible to turn any topological space 𝑋 into a compact one by adding
a single point. The resulting space is called the one-point (or Alexandroff )
compactification of 𝑋. To study its properties, we first introduce an auxiliary
definition which generalises the notion of compactness.
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Definition 8.5.1. We say that a space 𝑋 is locally compact if every point of 𝑋
has a compact neighbourhood.

A compact space is trivially locally compact, since we can take the whole space
as a compact neighbourhood of every point.

Exercise 70. Prove that there are subspaces of a Euclidean space that are not
locally compact.

Lemma 8.5.2. Let 𝑋 be a compact Hausdorff space. Then 𝑋 is regular,
i.e. closed sets and points can be separated by open sets.

Proof. Let 𝐶 be a closed set in 𝑋, and 𝑥 ∉ 𝐶. Since 𝑋 is compact, 𝐶 is
compact by Proposition 8.1.2. For any 𝑦 ∈ 𝐶, let 𝑉𝑦 and 𝑈𝑦 be disjoint open
neighbourhoods of 𝑦 and 𝑥 respectively. By compactness of 𝐶, there exists a
finite subset 𝐽 of 𝐶 such that 𝑉 ∶= ⋃𝑦∈𝐽 𝑉𝑦 ⊇ 𝐶. Now set 𝑈 ∶= ⋂𝑦∈𝐽 𝑈𝑦. Then
𝑈 and 𝑉 are disjoint open sets containing 𝑥 and 𝐶 respectively.

Exercise 71. Show that a compact Hausdorff space is normal, i.e. pairs of disjoint
closed sets can be separated by open sets.

Proposition 8.5.3. Let 𝑋 be a compact Hausdorff space. Then every point of
𝑥 has a system of compact neighbourhoods.

Proof. Let 𝑈 be an open subset of 𝑋, and 𝑥 ∈ 𝑋. We have to construct
a compact neighbourhood of 𝑥 contained in 𝑈 . Let 𝑊 and 𝑉 disjoint open
sets containing 𝑋 ∖ 𝑈 and 𝑥 respectively, which exist by Lemma 8.5.2. Then
𝐾 ∶= 𝑋 ∖ 𝑊 ⊆ 𝑈 , so it is a neighbourhood of 𝑥. Finally, 𝐾 is closed, hence
compact by Proposition 8.1.2.

Corollary 8.5.4. Let 𝑋 be a locally compact Hausdorff space. Then every point
of 𝑥 has a system of compact neighbourhoods.

Proof. Let 𝑥 ∈ 𝑋, and 𝐾 a compact neighbourhood of 𝑥. Let 𝑈 ⊆ 𝐾 be an
open set containing 𝑥. Then 𝑈 is also open in 𝐾, hence it contains a compact
neighbourhood 𝐾′ of 𝑥 by Proposition 8.5.3. It is then clear that 𝐾′ is also a
neighbourhood of 𝑥 in the topology of 𝑋.

Corollary 8.5.5. An open subspace of a compact Hausdorff space 𝑋 is locally
compact.

Proof. If 𝑈 ⊆ 𝑋 is open, and 𝑥 ∈ 𝑈 , then 𝑈 contains a compact neighbourhood
𝐾 of 𝑥 by Proposition 8.5.3, and 𝐾 is also a neighbourhood of 𝑥 in the topology
of 𝑈 .

One-point compactification allows us to prove a converse for Corollary 8.5.5.
If 𝑋 is a topological space, we define the one-point compactification of 𝑋∞ to
be the set 𝑋 + 1, equipped with the topology we are going to describe below.
We will identify 𝑋 with the corresponding subset of 𝑋∞ along the coproduct
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injection 𝑋 → 𝑋∞. The remaining point of 𝑋∞, determined by the other
coproduct injection 1 → 𝑋∞, will be denoted by ∞.

We declare a subset 𝑈 ⊆ 𝑋∞ open if one of the following conditions holds:

• ∞ ∉ 𝑈 , and 𝑈 is open in 𝑋;
• ∞ ∈ 𝑈 , and 𝑋 ∖ 𝑈 is closed and compact.

In particular, 𝑋 itself is open as a subset of 𝑋∞.

Proposition 8.5.6. The collection of open subsets of 𝑋∞ defined above forms
a topology.

Proof. Let (𝑈𝑖)𝑖∈𝐼 be a family of open sets, and let 𝑉 be their union. If none of
them contains ∞, then neither does 𝑉 , hence 𝑉 is open in 𝑋∞ since it is open
in 𝑋. If at least one of them, say 𝑈𝑖0

, contains ∞, then let 𝐾 = 𝑋 ∖ 𝑈𝑖0
. Now,

𝑋 ∖ 𝑉 = ⋂
𝑖∈𝐼

(𝑋 ∖ 𝑈𝑖) ⊆ 𝐾,

so 𝑋 ∖ 𝑉 is closed and contained in 𝐾. Since 𝐾 is also closed, 𝑋 ∖ 𝑉 is closed
in 𝐾 as well, hence 𝑋 ∖ 𝑉 is compact by Proposition 8.1.2.

Now suppose that 𝐼 is finite, and let 𝑊 be the intersection of the 𝑈𝑖. If all of
the 𝑈𝑖 contain ∞, then so does their union. Since 𝑋 ∖ 𝑊 is a finite union of
compact spaces, it is compact by Corollary 8.1.10, so 𝑊 is open. If instead one
of the 𝑈𝑖 does not contain ∞, then ∞ ∉ 𝑊 , and we can write 𝑊 as a finite
intersection of open sets of 𝑋.

Note that the topology on 𝑋 when regarded as an open subspace of 𝑋∞ does
coincide with the original topology on 𝑋, essentially by construction.

Proposition 8.5.7. For any topological space 𝑋, the one-point compactification
𝑋∞ of 𝑋 is compact.

Proof. Let (𝑈𝑖)𝑖∈𝐼 be an open cover of 𝑋. Let 𝑖0 ∈ 𝐼 be such that ∞ ∈ 𝑈𝑖0
, and

let 𝐾 = 𝑋 ∖ 𝑈𝑖0
. Then (𝑈𝑖 ∩ 𝐾)𝑖∈𝐼 is an open cover of 𝐾, hence there exists a

finite subset 𝐽 of 𝐼 such that
⋃
𝑗∈𝐽

𝑈𝑗 ⊇ 𝐾.

In particular, 𝐽 ∪ {𝑖0} determines a finite subcover of 𝑋∞.

Proposition 8.5.8. Let 𝑋 be a topological space. Then 𝑋 is locally compact
and Hausdorff if and only if 𝑋∞ is compact and Hausdorff.

Proof. If 𝑋∞ is Hausdorff, then so is 𝑋 by Proposition 7.1.3, and if 𝑋∞ is
compact, then 𝑋 is locally compact by Corollary 8.5.5.

Conversely, suppose that 𝑋 is locally compact and Hausdorff. We already know
that 𝑋∞ is compact, so we need to prove that it is Hausdorff. Since we already
know that we can separate points in 𝑋, it remains to show that we can separate
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a point 𝑥 ∈ 𝑋 from ∞. So let 𝐾 be a compact neighbourhood of 𝑥, and 𝑈 an
open neighbourhood of 𝑥 contained in 𝐾. Since 𝑋 is Hausdorff, 𝐾 is closed by
Proposition 8.1.3. Therefore, 𝑋∞ ∖ 𝐾 is an open neighbourhood of ∞, and it
is disjoint from 𝑈 by construction.

Corollary 8.5.9. A Hausdorff space is locally compact if and only if it is an
open set of a compact Hausdorff space.

Exercise 72. Show that 𝑋 is dense in 𝑋∞ if and only if 𝑋 is not compact and
not empty.

The following proposition shows that the one-point compactification is in some
sense “the only way” to turn a space into a compact Hausdorff space by adding
a point, at least in the case of locally compact Hausdorff spaces.

Proposition 8.5.10. Let 𝑌 be a compact Hausdorff space, and 𝑝 ∈ 𝑌 any
point. Let 𝑋 be the complement of 𝑝. Then the map 𝑓 ∶ 𝑋∞ → 𝑌 defined by
𝑓(∞) = 𝑝 and 𝑓(𝑥) = 𝑥 for 𝑥 ∈ 𝑋 is a homeomorphism.

Proof. It is clear that 𝑓 is bijective. By Corollary 8.1.8, it is enough to show
that 𝑓 is continuous. If 𝑈 is an open subset of 𝑌 that does not contain 𝑝, then
𝑈 ⊆ 𝑋, so 𝑓−1(𝑈) = 𝑈 is open in 𝑋, since 𝑋 itself is open thanks to the fact
that 𝑌 is Hausdorff.

If, on the other hand, 𝑝 ∈ 𝑈 , then ∞ ∈ 𝑓−1(𝑈), so we need to check that
𝑋∞ ∖ 𝑓−1(𝑈) is compact (since then Proposition 8.1.3 will imply that it is
closed in 𝑋). But 𝑋∞ ∖ 𝑓−1(𝑈) = 𝑌 ∖ 𝑈 , so it is closed in 𝑌 , hence compact
by Proposition 8.1.2.

Exercise 73. Show that 𝑆𝑛 is the one-point compactification of ℝ𝑛. [Hint:
remember the stereographic projection 𝑆𝑛 ∖ {𝑁} → ℝ𝑛]

8.6 Example: complex projective spaces
The definition of complex projective spaces is entirely analogous to that of their
real counterparts.

Definition 8.6.1. Let ∼ be the equivalence relation on ℂ𝑛+1 ∖{0} where 𝑥 ∼ 𝑦
if and only if there exists 𝜆 ∈ ℂ with 𝑥 = 𝜆𝑦. The quotient space ℂ𝑛+1/∼ is
called the 𝑛-dimensional complex projective space, and is denoted ℂ𝑃 𝑛.

Note that, despite the similar definition, ℂ𝑃 𝑛 is not homeomorphic to any of
the ℝ𝑃 𝑚, except when 𝑛 = 𝑚 = 0, in which case they are both the terminal
space. Unfortunately, we will not be able to prove this general statement in
these notes.

Nevertheless, similar results to those about real projective spaces hold in the
complex case. Their proofs are completely analogous and are left to the reader.
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Proposition 8.6.2. Assume 𝑛 > 0. Let 𝑈0 be the set of points [𝑥0, …, 𝑥𝑛] ∈ ℂ𝑃 𝑛

where 𝑥0 ≠ 0. Then 𝑈0 is a dense open subspace of ℂ𝑃 𝑛 homeomorphic to ℂ𝑛,
and the complement of 𝑈0 is homeomorphic to ℂ𝑃 𝑛−1.

Proposition 8.6.3. Let ∼ be the equivalence relation on 𝑆2𝑛+1 ⊆ ℂ𝑛+1 where
𝑥 ∼ 𝑦 if and only if there exists 𝜆 ∈ 𝑆1 such that 𝑥 = 𝜆𝑦. Then ℂ𝑃 𝑛 ≅ 𝑆2𝑛+1/∼.

Corollary 8.6.4. The complex projective spaces are connected and compact
Hausdorff spaces.

Interestingly, the analogous of Proposition 5.6.4 requires a slightly different
approach. The strategy that we used in the real case was to construct a map
𝑆1 → 𝑆1 and show that it induces a homeomorphism ℝ𝑃 1 ≅ 𝑆1.

In the complex case, note that puncturing ℂ𝑃 1 produces ℂ, therefore we should
expect ℂ𝑃 1 to be homeomorphic to 𝑆2. This is indeed the case, but trying to
execute the above strategy would require us to find a non-trivial map 𝑆3 → 𝑆2

that is compatible with the equivalence relation on 𝑆3, and it is not obvious
how to construct such a map.

In fact, it is easier to prove that ℂ𝑃 1 ≅ 𝑆2 directly, then apply the above
strategy in reverse to obtain the map 𝑆3 → 𝑆2 above. This would also work
in the real case, and we leave it to the reader to fill in the details and produce
another proof of Proposition 5.6.4.

Proposition 8.6.5. ℂ𝑃 1 ≅ 𝑆2.

Proof. Both spaces are homeomorphic to the one-point compactification of ℂ
by Proposition 8.5.10.

The projection into the quotient 𝑆3 → ℂ𝑃 1 can then be regarded as a map
ℎ ∶ 𝑆3 → 𝑆2. This map is called the Hopf map (or Hopf fibration), and it is a
tool of fundamental importance in the study of algebraic invariants of spheres.
Note that for any point of 𝑆2, its fibre (i.e. inverse image) is homeomorphic to
𝑆1.

Exercise 74. Make the homeomorphisms involved in the proof of Proposi-
tion 8.6.5 explicit, and obtain a formula for the Hopf fibration.

8.7 Example: matrix groups and quaternions
The set of 𝑛×𝑚 matrices with real coefficients is obviously in bijection with ℝ𝑛𝑚,
for example by regarding a matrix as the vector obtained by concatenating all
its columns. There are other ways to set up such a bijection, but they all differ
by a permutation of the coordinates of ℝ𝑛𝑚. Since permuting coordinates is a
homeomorphism ℝ𝑘 → ℝ𝑘, this means that there is a well-defined topology on
the set of 𝑛 × 𝑚 matrices that makes all these bijections into homeomorphisms.
Therefore, from now on we will regard the set of matrices as a topological space.
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We will mostly focus on square 𝑛 × 𝑛 matrices, and denote them by Mat(𝑛, ℝ).
The whole space Mat(𝑛, ℝ) is, by construction, just a Euclidean space, so there
is nothing new there. However, by exploiting the rest of the algebraic structure
on matrices we can define new interesting subspaces.

Definition 8.7.1. For any 𝑛 ≥ 1, the real general linear group in dimension 𝑛
is the space of invertible 𝑛 × 𝑛 matrices with real coefficients, and is denoted
𝐺𝐿(𝑛, ℝ).
A matrix with coefficients in a field is invertible if and only if its determinant
is non-zero, therefore 𝐺𝐿(𝑛, ℝ) can be regarded as the inverse image of ℝ ∖ {0}
along the function det ∶ Mat(𝑛, ℝ) → ℝ that computes the determinant. By
writing out an explicit formula for the determinant of a matrix, one can observe
that det is a polynomial function of the coefficients, therefore continuous. It
follows that 𝐺𝐿(𝑛, ℝ) is an open subset of Mat(𝑛, ℝ).
Furthermore, since ℝ∖{0} is disconnected, it follows that 𝐺𝐿(𝑛, ℝ) is also discon-
nected. Let 𝐺𝐿+(𝑛, ℝ) be the open subspace of 𝐺𝐿(𝑛, ℝ) consisting of matrices
with positive determinant, and 𝐺𝐿−(𝑛, ℝ) be its complement (so, matrices with
negative determinant).

Exercise 75. Prove that 𝐺𝐿−(𝑛, ℝ) is homeomorphic to 𝐺𝐿+(𝑛, ℝ).
Proposition 8.7.2. 𝐺𝐿+(𝑛, ℝ) is connected. Therefore, 𝐺𝐿+(𝑛, ℝ) and
𝐺𝐿−(𝑛, ℝ) are precisely the connected components of 𝐺𝐿(𝑛, ℝ).
We will prove Proposition 8.7.2 later.

Exercise 76. Show that 𝐺𝐿(𝑛, ℝ) is not compact.

Definition 8.7.3. For any 𝑛 ≥ 1, the orthogonal group in dimension 𝑛 is the
space of orthogonal 𝑛 × 𝑛 matrices, and is denoted 𝑂(𝑛).
Recall that a matrix 𝐴 is said to be orthogonal if 𝐴𝑡𝐴 = 𝐼 , where 𝐴𝑡 denotes
the transpose of 𝐴. In other words, a matrix is orthogonal if and only if all its
columns are pairwise orthogonal, and have length 1, i.e. they form an orthonor-
mal basis of ℝ𝑛 with respect to its standard scalar product.

In particular, the homeomorphism Mat(𝑛, ℝ) → (ℝ𝑛)𝑛 that sends a matrix to
the sequence of its columns maps 𝑂(𝑛) into the subspace (𝑆𝑛−1)𝑛.

Proposition 8.7.4. Through the identification above, 𝑂(𝑛) is a closed subspace
of (𝑆𝑛−1)𝑛.

Proof. The equation defining 𝑂(𝑛) can be regarded as a system of polynomial
(more precisely, quadratic) equations in the coefficients of a matrix. Therefore,
their solution space is the inverse image of a point along a continuous function,
which is then closed in Mat(𝑛, ℝ), hence in (𝑆𝑛−1)𝑛.

Corollary 8.7.5. The orthogonal group 𝑂(𝑛) is compact.
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Proof. By Corollary 8.1.15, (𝑆𝑛−1)𝑛 is compact, and by Proposition 8.7.4, 𝑂(𝑛)
is homeomorphic to a closed subspace of it, hence it is compact by Proposi-
tion 8.1.2.

Exercise 77. Prove that 𝑂(2) ≅ 𝑆1 × 𝑂(1).
Just like 𝐺𝐿(𝑛, ℝ), 𝑂(𝑛) is not connected, since det(𝑂(𝑛)) = 𝑂(1) = {−1, 1}.
This motivates the following definition:

Definition 8.7.6. The special orthogonal group 𝑆𝑂(𝑛) is the subspace of 𝑂(𝑛)
consisting of matrices of determinant 1.

Let us regard 𝑆𝑂(𝑛) as the subspace of 𝑆𝑂(𝑛+1) consisting of all those matrices
of the form

[ 1 0𝑡

0 𝐴 ] ,

where 𝐴 is an arbitrary matrix in 𝑆𝑂(𝑛). Note that a matrix 𝑋 ∈ 𝑆𝑂(𝑛 + 1)
belongs to this subspace if and only if its first column is 𝑒1, the first vector of
the standard basis, i.e. if and only if 𝑒1 is an eigenvector of 𝑋 with eigenvalue
1.

Lemma 8.7.7. Let 𝑛 > 1, 𝑣 ∈ 𝑆𝑛−1, and 𝐻 be the subspace of 𝑆𝑂(𝑛) consisting
of matrices whose first column is 𝑣. Then 𝐻 is homeomorphic to 𝑆𝑂(𝑛 − 1).
Proof. First of all, 𝐻 is non empty. In fact, one can extend 𝑣 to a positive
orthonormal basis of ℝ𝑛, and the matrix 𝐴 having those vectors as columns will
be in 𝐻.

Now, if 𝐵 is any element of 𝐻, then 𝐴−1𝐵𝑒1 = 𝐴−1𝑣 = 𝑒1, hence 𝐴−1𝐵 ∈
𝑆𝑂(𝑛 − 1). Conversely, if 𝐶 ∈ 𝑆𝑂(𝑛 − 1), then 𝐴𝐶 ∈ 𝐻. Therefore, mul-
tiplication by 𝐴 establishes a homeomorphism between 𝑆𝑂(𝑛 − 1) and 𝐻, as
required.

Proposition 8.7.8. 𝑆𝑂(𝑛) is connected.

Proof. By induction on 𝑛, the base case 𝑛 = 1 being trivial, since 𝑆𝑂(1) = 1,
the terminal space. Therefore, let 𝑛 > 1, and assume that 𝑆𝑂(𝑘) is connected
for 𝑘 < 𝑛.

Let 𝑓 ∶ 𝑆𝑂(𝑛) → 𝑆𝑛−1 be the function that returns the first column of a matrix.
The function 𝑓 is clearly continuous and surjective, and Proposition 8.1.7 implies
that it is closed. By Exercise 26, 𝑆𝑛−1 has the final topology induced by 𝑓 .

We now show that 𝑓 is an open map. Let 𝑈 be an open subset of 𝑆𝑂(𝑛).
Observe that

𝑓−1(𝑓(𝑈)) = ⋃
𝐴∈𝑆𝑂(𝑛−1)

𝐴𝑈,

where, as above, we are identifying 𝑆𝑂(𝑛 − 1) with the subgroup of 𝑆𝑂(𝑛)
consisting of those matrices that fix the first vector of the standard basis.
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Since multiplying by a matrix in 𝑆𝑂(𝑛) induces a homeomorphism 𝑆𝑂(𝑛) →
𝑆𝑂(𝑛), it follows that 𝑓−1(𝑓(𝑈)) can be written as a union of open sets, hence
it is open, and therefore 𝑓(𝑈) is open.

Now suppose 𝑆𝑂(𝑛) = 𝑈 ∪ 𝑉 , where 𝑈 and 𝑉 are non-empty open sets. We
have to show that 𝑈 and 𝑉 meet. Since 𝑆𝑛−1 is connected for 𝑛 > 1, it follows
that 𝑓(𝑈) ∩ 𝑓(𝑉 ) cannot be empty, hence it contains an element 𝑣.

Let 𝑋 be the inverse image of 𝑣 along 𝑓 , i.e. the space of all matrices in 𝑆𝑂(𝑛)
such that their first column is 𝑣. By Lemma 8.7.7, 𝑋 ≅ 𝑆𝑂(𝑛 − 1), hence 𝑋 is
connected by induction hypothesis. But 𝑈 ∩𝑋 is non-empty, since 𝑣 ∈ 𝑓(𝑈 ∩𝑋),
and similarly 𝑉 ∩ 𝑋 is non empty. It follows that 𝑈 ∩ 𝑉 ≠ ∅, as required.

As promised, we will now prove that 𝐺𝐿+(𝑛, ℝ) is connected.

Lemma 8.7.9. Let 𝐴 be a matrix in 𝐺𝐿(𝑛, ℝ). Then there exists a matrix
𝐵 ∈ 𝑂(𝑛) and a path in 𝐺𝐿(𝑛, ℝ) connecting 𝐴 to 𝐵.

Proof. Let 𝑣1, …, 𝑣𝑛 be the columns of 𝐴. The idea of the proof is that we
execute Gram-Schmidt’s orthogonalisation, with the addition of a parameter 𝑡
that, when set to 0, will leave the matrix unchanged, and when set to 1, will
produce an orthogonal matrix.

Let
𝑤𝑖(𝑡) = 𝑣𝑖 − 𝑡 ∑

𝑗<𝑖
𝑣𝑗

𝑣𝑗 · 𝑣𝑖
‖𝑣𝑗‖

.

If 𝑄(𝑡) is the matrix whose columns are the 𝑤𝑖(𝑡), then 𝑄 defines a path in
Mat(𝑛, ℝ) from 𝑄(0) = 𝐴 to a matrix 𝑄(1). Now 𝑄(1) is the Gram-Schmidt
orthogonalisation of 𝐴, hence 𝑄(1) can be connected to an orthogonal matrix
simply by scaling every column.

It remains to show that every 𝑄(𝑡) on the path actually belongs to 𝐺𝐿(𝑛, ℝ),
i.e. that 𝑄(𝑡) is invertible for all 0 ≤ 𝑡 ≤ 1. Observe that the definition of 𝑄
can be rewritten as a matrix multiplication:

𝑄(𝑡) = 𝐴𝑅(𝑡)
where 𝑅(𝑡) is an upper triangular matrix with ones on the diagonal, hence
invertible. Since 𝐴 ∈ 𝐺𝐿(𝑛, ℝ), it follows that 𝑄(𝑡) is also invertible.

Corollary 8.7.10. 𝐺𝐿+(𝑛, ℝ) is connected.

Proof. For all 𝐴 ∈ 𝐺𝐿+(𝑛, ℝ), Lemma 8.7.9 implies that there exists a path
connecting 𝐴 to a matrix in 𝑂(𝑛). Since 𝐴 has positive determinant, it follows
that this path connects 𝐴 to 𝑆𝑂(𝑛). Let 𝐶𝐴 be the union of 𝑆𝑂(𝑛) and the
image of this path.

We clearly have that 𝐺𝐿+(𝑛, ℝ) is the union of the 𝐶𝐴, since 𝐴 ∈ 𝐶𝐴, and each
of the 𝐶𝐴 is connected by Proposition 6.1.9, hence 𝐺𝐿+(𝑛, ℝ) is connected by
Proposition 6.1.9 again.
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Exercise 78. Show that 𝐺𝐿+(𝑛, ℝ) is also path connected. [Hint: use that it is
an open subset of Euclidean space]. Deduce that 𝑆𝑂(𝑛) is also path connected.

We can give similar definitions of matrix groups in the complex case. Of course,
the starting point is Mat(𝑛, ℂ), which gets its topology from ℂ𝑛2 , or alternatively,
ℝ2𝑛2 .

Definition 8.7.11. The complex general linear group is the subspace of
Mat(𝑛, ℂ) consisting of invertible matrices, and is denoted 𝐺𝐿(𝑛, ℂ).
Definition 8.7.12. The unitary group is the subspace of 𝐺𝐿(𝑛, ℂ) consisting
of unitary matrices, i.e. those matrices 𝐴 such that 𝐴∗𝐴 = 𝐼 , where 𝐴∗ is the
transpose conjugate of 𝐴. It is denoted 𝑈(𝑛).
Definition 8.7.13. The special unitary group is the subspace of 𝑈(𝑛) consisting
of those matrices that have determinant 1, and is denoted 𝑆𝑈(𝑛).
We can immediately observe a difference with the linear case, in that the de-
terminant of an invertible matrix with complex coefficient is an element of
𝐺𝐿(1, ℂ) = ℂ ∖ {0}, which is connected. Therefore, we cannot conclude that
𝐺𝐿(𝑛, ℂ) is disconnected as we could for 𝐺𝐿(𝑛, ℝ). In fact, we have the follow-
ing:

Proposition 8.7.14. 𝐺𝐿(𝑛, ℂ), 𝑈(𝑛) and 𝑆𝑈(𝑛) are path connected for all
𝑛 ≥ 1.

The proof uses the same ideas as the one of Proposition 8.7.8, so it is left as an
exercise for the reader. We have similar results about compactness.

Proposition 8.7.15. 𝑈(𝑛) and 𝑆𝑈(𝑛) are compact. 𝐺𝐿(𝑛, ℂ) is not compact.

Not all of the matrix groups are “new” spaces. Among the trivial examples,
𝑂(1) is a discrete space with two points, and 𝑆𝑂(1) and 𝑆𝑈(1) are the terminal
space. We have already observed that 𝑂(2) ≅ 𝑆1 × 𝑂(1), from which it follows
that 𝑆𝑂(2) ≅ 𝑆1. Finally, it is immediate from the definition that 𝑈(1) is also
homeomorphic to 𝑆1.

Let us now turn our attention to one of the higher dimensional examples.

Recall that the quaternion algebra ℍ is the 4-dimensional real algebra generated
by elements 𝑖, 𝑗, 𝑘, subject to the relations 𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗, 𝑖2 = 𝑗2 = 𝑘2 =
−1. Note that ℍ is not commutative. We regard ℍ as a topological space by
identifying it with ℝ4.

Quaternions (i.e. elements of ℍ) have a conjugation operation ∗ ∶ ℍ → ℍ, defined
by (𝑤+𝑖𝑥+𝑗𝑦+𝑘𝑧)∗ = 𝑤−𝑖𝑥−𝑖𝑦−𝑖𝑧. If 𝑞 = 𝑤+𝑖𝑥+𝑗𝑦+𝑘𝑧 is any quaternion,
then its norm 𝑞∗𝑞 is a positive real number equal to 𝑤2 + 𝑥2 + 𝑦2 + 𝑧2, hence it
is the Euclidean norm of 𝑞 when regarded as a vector in ℝ4. In particular, we
can identify 𝑆3 with the set of unit quaternions, i.e. quaternions of norm 1.

It is easy to see that ℍ is isomorphic to the subalgebra of 2 × 2 matrices with
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complex coefficients of the form [𝑎 −𝑏∗

𝑏 𝑎∗ ]. The norm of the corresponding

quaternion is |𝑎|2 + |𝑏|2, hence such a matrix is in 𝑆𝑈(2) if and only if it corre-
sponds to a unit quaternion. So we have proved the following:

Proposition 8.7.16. 𝑆𝑈(2) ≅ 𝑆3.

There is also an important relation between unit quaternions and 𝑆𝑂(3), i.e. ro-
tations of 3-dimensional Euclidean space, which the next exercises explore.

Exercise 79. Let 𝑉 be the 3-dimensional real subspace of ℍ generated by
𝑖, 𝑗, 𝑘. Show that for any unit quaternion 𝑞, the function 𝑥 ↦ 𝑞𝑥𝑞∗ restricts
to an orthogonal linear automorphism of 𝑉 , when regarded as a subspace of ℝ4

with the Euclidean metric. Use this fact to construct a group homomorphism
𝑆𝑈(2) → 𝑆𝑂(3) and prove that it is continuous.

Exercise 80. Show that a unit quaternion 𝑞 determines the identity rotation of
𝑉 if and only if 𝑞 = 1 or 𝑞 = −1. Deduce that two quaternions determine the
same rotation if and only if they correspond to antipodal points on 𝑆3.

Exercise 81. Let 𝐴 be a matrix in 𝑆𝑂(3). Define:

𝑤 = 1
2 √1 + tr(𝐴)

𝑥 = 1
4𝑤 (𝐴32 − 𝐴23)

𝑦 = 1
4𝑤 (𝐴13 − 𝐴31)

𝑧 = 1
4𝑤 (𝐴21 − 𝐴12).

Show that the quaternion 𝑞 = 𝑤 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 determines the rotation corre-
sponding to 𝐴.

Exercise 82. Use the previous exercises to construct a homeomorphism 𝑆𝑂(3) ≅
ℝ𝑃 3.

Quaternions can be used as a base to build projective spaces, just like the
reals and the complex numbers. We will not pursue that here, but suggest the
following exercises for the interested readers.

Exercise 83. Give a definition of the quaternionic projective space ℍ𝑃 𝑛. [Hint:
just like for the real and complex case, define an equivalence relation on ℍ𝑛+1,
and then quotient by it]

Exercise 84. Prove that ℍ𝑃 𝑛 is homeomorphic to a quotient of 𝑆4𝑛+3. Deduce
that ℍ𝑃 𝑛 is compact.

Exercise 85. Prove that ℍ𝑃 1 ≅ 𝑆4. Use this homeomorphism to construct a
map 𝑆7 → 𝑆4 (the quaternionic Hopf map) with fibre homeomorphic to 𝑆3.

9 Elements of algebraic topology
With the topological invariants introduced so far, we have been able to show
that certain pairs of spaces are not homeomorphic. However, those invariants
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alone are not sufficient to distinguish many of the common examples we have
seen, including Euclidean spaces of different dimensions, the various spheres,
and two-dimensional surfaces.

For example, we have seen that it is easy to prove that ℝ is not homeomorphic
to ℝ2 by removing one point from each (we say puncturing them) and observ-
ing that they cannot be homeomorphic, because the latter is (path) connected
and the former is not. However, the argument does not generalise to higher
Euclidean spaces, because a punctured ℝ𝑛 and a punctured ℝ𝑛−1 are both path
connected when 𝑛 > 1.

One way to understand why what we have so far is not enough to solve this
seemingly very simple problem is to think back about the proof technique that
we used. We can conceptualise the above argument as follows: to show that two
spaces are not homeomorphic, assign a certain “object” to every space in such
a way that homeomorphic spaces get isomorphic objects, then compute that
object for the two spaces of interest, and show that they are not isomorphic.
Such an object will be called an “invariant”.

In our case, the invariant was the set 𝜋0 of path connected components. Clearly,
homeomorphic spaces have isomorphic sets of path connected components,
therefore the argument goes through. However, 𝜋0 alone is not enough to
distinguish punctured Euclidean spaces of higher dimensions.

This suggests that we need more sophisticated invariants for higher dimensions.
As it turns out, most of those invariants have the additional benefit of carrying
an algebraic structure. Therefore, the study of these invariants and the tech-
niques needed to compute them is called algebraic topology, since it uses ideas
from both topology and algebra.

In the rest of these notes, we will introduce the most elementary such invariant,
the fundamental group 𝜋1, and we will use it to make some progress in the
problem introduced above. Namely, we will show that ℝ2 is not homeomorphic
to ℝ𝑛 if 𝑛 ≠ 2. To completely solve the problem of distinguishing Euclidean
spaces, we would need higher analogues to the fundamental group, called higher
homotopy groups and denoted by 𝜋𝑛, but they are unfortunately out of the scope
of these notes.

We will, however, apply the fundamental group to other problems, and obtain
important results such as Brouwer’s fixed point theorem as a simple consequence
of the “functoriality” of 𝜋1.

9.1 Homotopies and the fundamental group
In section 6.2 we have introduced the notion of path in a topological space, and
constructed path concatenation as a map that takes two “consecutive” paths
on a space and produces a new one. Since paths can only be concatenated if
their endpoints are compatible, meaning that the second endpoint of the first
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𝛽 𝛾𝛼

𝛽 𝛾𝛼

𝑏 𝑏

Figure 8: Associativity of path concatenation

path coincides with the first endpoint of the second path, the concatenation
operation does not quite give us an algebraic structure on paths.

One way around this difficulty is restricting our attention to loops, i.e. paths
that begin and end at the same point. Since all loops around a given base
point 𝑏 can be concatenated, we immediately get the beginning of an algebraic
structure on paths. For this reason, we will often consider spaces equipped with
a choice of base point. The base point is often arbitrary, and we will see that
many constructions do not depend on the specific choice of the base point (only
on its connected component), but having one always available simplifies certain
statements.

Definition 9.1.1. A pointed (topological) space is a topological space 𝑋
equipped with a distinguished point 𝑏 ∈ 𝑋, called the base point.

There is also a second difficulty to take care of. Namely, the operation of
concatenation of loops is not associative, and it does not possess a neutral
element, making it difficult to deal with algebraically. To see why associativity
fails, let us fix three loops 𝛼, 𝛽, 𝛾 on a pointed space 𝑋, and consider the two
possible way to concatenate them in that order: 𝛼 ∗ (𝛽 ∗ 𝛾) and (𝛼 ∗ 𝛽) ∗ 𝛾.

𝛽 𝛾To compute the former path, we first concatenate 𝛽 and 𝛾, giving
rise to a path that traces 𝛽 at double speed on the interval [0, 1

2 ],
followed by 𝛾, also at double speed, on the interval [ 1

2 , 1].

𝛽 𝛾𝛼Then, we add 𝛼 at the beginning, which means that now 𝛼 will
be traced at double the speed on the interval [0, 1

2 ], while 𝛽 and
𝛾 will both be traced at four times the original speed, on the
intervals [ 1

2 , 3
4 ] and [ 3

4 , 1] respectively.

𝛽 𝛾𝛼On the other hand, the other way of composing the three paths
yields a different parameterisation of the result, where 𝛼 and 𝛽
are now traced at four times the speed on the intervals [0, 1

4 ] and
[ 1

4 , 1
2 ] respectively, while 𝛾 is on [ 1

2 , 1] going at twice the speed.

Therefore, the two resulting paths are clearly not equal. On the other hand, it
is pretty clear that it is possible to convert one into the other in a continuous
way. This can be realised by defining a continuous function from the square
[0, 1]×[0, 1] into 𝑋 such that two opposite sides are mapped to the two composed
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loops, while the other two opposite sides stay constant on the base point 𝑏.

This function can be described explicitly as follows:

ℎ(𝑠, 𝑡) =
⎧{
⎨{⎩

𝛼((2𝑡 + 2)𝑠) for 0 ≤ 𝑠 ≤ 1
2𝑡+2

𝛽(4𝑠 + 𝑡 − 2) for 1
2𝑡+2 ≤ 𝑠 ≤ 𝑡+3

4𝑡+4
𝛾((4 − 2𝑡)𝑠 + 2𝑡 − 3) for 𝑡+3

4𝑡+4 ≤ 𝑠 ≤ 1.

This explicit formula can be obtained by computing the expressions for the
two loops 𝛼 ∗ (𝛽 ∗ 𝛾) and (𝛼 ∗ 𝛽) ∗ 𝛾 given by repeated applications of Defi-
nition 6.2.8, then linearly interpolating the two formulas with the additional
variable 𝑡. Continuity follows immediately from Proposition 5.1.4.

The above observation motivates the following definition.

Definition 9.1.2. Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 two continuous functions between topo-
logical spaces. A homotopy between 𝑓 and 𝑔 is a continuous function

ℎ ∶ 𝑋 × [0, 1] → 𝑌 ,

such that for all 𝑥 ∈ 𝑋, ℎ(𝑥, 0) = 𝑓(𝑥) and ℎ(𝑥, 1) = 𝑔(𝑥). The two functions 𝑓
and 𝑔 are said to be homotopic, and we write 𝑓 ∼ 𝑔, if there exists a homotopy
between them.

The function ℎ defined above is then a homotopy between the loops 𝛼 ∗ (𝛽 ∗ 𝛾)
and (𝛼 ∗ 𝛽) ∗ 𝛾. Furthermore, ℎ(0, 𝑠) = ℎ(1, 𝑠) = 𝑏 for all 𝑠 ∈ [0, 1]. We abstract
this property with a new definition.

Definition 9.1.3. Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be continuous functions, ℎ a homotopy
between them, and 𝐴 a subspace of 𝑋. We say that ℎ is a homotopy relative to
𝐴 if ℎ(𝑎, 𝑡) is constant in 𝑡 for all points 𝑎 ∈ 𝐴. When such a homotopy exists,
we say that 𝑓 and 𝑔 are homotopic relative to 𝐴, and write 𝑓 ∼ 𝑔 (rel 𝐴).
Note that if 𝑓 and 𝑔 are homotopic relative to 𝐴, then in particular they restrict
to the same function on 𝐴. Also note that the absolute version of homotopy
given in Definition 9.1.2 can be thought of as homotopy relative to the empty
subspace of 𝑋, hence we only need to concern ourselves with the relative case
when proving properties of homotopies.

Given a homotopy ℎ between 𝑓 and 𝑔, and a fixed 𝑡 ∈ [0, 1], we will sometimes
write ℎ𝑡 to denote the function 𝑋 → 𝑌 given by ℎ𝑡(𝑥) = ℎ(𝑥, 𝑡). Clearly, ℎ𝑡 is
a continuous function, ℎ0 = 𝑓 and ℎ1 = 𝑔. Dually, if we fix a point 𝑥 ∈ 𝑋, we
can define a path ℎ𝑥 in 𝑌 connecting 𝑓(𝑥) and 𝑔(𝑥).
Since we have proved that the two possible ways to compose three loops are
homotopic relative to {0, 1}, this suggests a way to resolve the problem with
associativity of path concatenation.

Proposition 9.1.4. Let 𝑋, 𝑌 be topological spaces, and 𝐴 a subspace of 𝑋.
The relation of homotopy relative to 𝐴 is an equivalence relation on the set of
continuous functions 𝑋 → 𝑌 .
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Proof. First, it is clear that the homotopy relation is reflexive, since given any
continuous function 𝑢 ∶ 𝑋 → 𝑌 , a homotopy ℎ relative to 𝐴 between 𝑢 and itself
is simply given by ℎ(𝑥, 𝑡) = 𝑢(𝑥).
As for symmetry, if ℎ is a relative homotopy between 𝑢 and 𝑣, we define a
homotopy 𝑘 between 𝑣 and 𝑢 as 𝑘(𝑥, 𝑡) = ℎ(𝑥, 1 − 𝑡).
Finally, let ℎ be a homotopy between 𝑢 and 𝑣, and 𝑘 a homotopy between 𝑣 and
𝑤. Define a new homotopy 𝑗 by setting 𝑗(𝑥, 𝑡) = (ℎ𝑥 ∗ 𝑘𝑥)(𝑡). By expanding the
definition of path concatenation, it is immediate to check that 𝑗 is continuous,
hence it defines a homotopy between 𝑢 and 𝑣.

Exercise 86. Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be continuous functions, 𝐴 a subspace of 𝑋,
ℎ a homotopy between 𝑓 and 𝑔 relative to 𝐴, and 𝑢 ∶ 𝑌 → 𝑍 any continuous
function. Show that 𝑢 ∘ ℎ is a homotopy between 𝑢 ∘ 𝑓 and 𝑢 ∘ 𝑔 relative to 𝐴.

Definition 9.1.5. Let 𝑋 be a pointed space. Define 𝜋1(𝑋) to be the quotient
of the set of loops on 𝑋 by the equivalence relation of homotopy relative to
{0, 1}.

Note that 𝑋 in Definition 9.1.5 is a pointed space, i.e. it comes with a choice of
a specified base point. When we want to be more explicit, we can denote such
a pointed space as a pair (𝑋, 𝑏), where 𝑋 is a topological space and 𝑏 ∈ 𝑋, and
correspondingly write 𝜋1(𝑋, 𝑏).
Exercise 87. Prove that two paths in any topological space 𝑋 are homotopic
relative to {1} if and only if they have the same endpoint. Prove that if 𝑋 is
path connected, then any two paths are homotopic (relative to empty set).

Exercise 87 shows that homotopies between paths that are not relative to {0, 1}
do not carry much information on the space. For this reason, we shall simply
say that two paths are homotopic to mean that they are homotopic relative to
{0, 1}, unless otherwise specified.

Proposition 9.1.6. For any pointed space 𝑋, path concatenation induces an
associative binary operation on 𝜋1(𝑋).
Proof. First, we show that path concatenation is well-defined up to homotopy.
That is, given loops 𝛼, 𝛼′, 𝛽, if 𝛼 and 𝛼′ are homotopic, then so are 𝛼 ∗ 𝛽
and 𝛼′ ∗ 𝛽. The analogous result for the right side can of course be proved
similarly. So let ℎ be a homotopy between 𝛼 and 𝛼′, and define a function 𝑘
as 𝑘(𝑠, 𝑡) = (ℎ𝑡 ∗ 𝛽)(𝑠). Clearly 𝑘 is continuous, and 𝑘0 = ℎ0 ∗ 𝛽 = 𝛼 ∗ 𝛽, while
𝑘1 = ℎ1 ∗ 𝛽 = 𝛼′ ∗ 𝛽, so 𝑘 is the desired homotopy.

Therefore, we can regard path concatenation as a function on homotopy classes
of loops, i.e. as a binary operation:

∗ ∶ 𝜋1(𝑋) × 𝜋1(𝑋) → 𝜋1(𝑋),

and the above explicit construction of the homotopy between 𝛼 ∗ (𝛽 ∗ 𝛾) and
(𝛼 ∗ 𝛽) ∗ 𝛾 shows that it is associative.
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The set 𝜋1(𝑋), equipped with the operation induced from path concatenation,
can actually be shown to be a group, called the fundamental group of the pointed
space 𝑋. The following two exercises spell out why 𝜋1(𝑋) is indeed a group.

Exercise 88. If (𝑋, 𝑏) is a pointed space, let 𝑒 be the constant (or trivial) loop
at the base point, i.e. the path defined by 𝑒(𝑠) = 𝑏. Show that the homotopy
class of 𝑒 is the neutral element of the operation on 𝜋1(𝑋, 𝑏).
Exercise 89. Let 𝛼 be a loop on a pointed space 𝑋. Define the inverse of 𝛼 to
be the path 𝛼−1 given by 𝛼−1(𝑠) = 𝛼(1 − 𝑠). Show that 𝛼 ∗ 𝛼−1 is homotopic
to the constant loop 𝑒, and that (𝛼−1)−1 = 𝛼. Deduce that the homotopy class
of 𝛼−1 in 𝜋1(𝑋) is an inverse for the homotopy class of 𝛼.

9.2 Homotopy equivalence
We will now attempt to compute fundamental groups in some very simple cases.

Proposition 9.2.1. Let 𝑋 be a convex subset of ℝ𝑛, and 𝑏 ∈ 𝑋. Then 𝜋1(𝑋, 𝑏)
is the trivial group.

Proof. If 𝛼 is any loop in 𝑋, we can show that 𝛼 is homotopic to the trivial loop.
In fact, let ℎ be the function defined by ℎ(𝑠, 𝑡) = (1−𝑡)𝛼(𝑠)+𝑡𝑏. The function ℎ
is clearly continuous, and it lies in 𝑋 thanks to convexity. Furthermore, ℎ0 = 𝛼
and ℎ1 is the trivial loop.

This shows that there is only one homotopy class of loops in 𝑋, hence 𝜋(𝑋, 𝑏)
must be the trivial group.

We can generalise the example of a convex space by abstracting out the proof
of Proposition 9.2.1.

Definition 9.2.2. A pointed space (𝑋, 𝑏) is said to be contractible if the identity
function 𝑋 → 𝑋 is homotopic to the constant function with value 𝑏.

More explicitly, a (𝑋, 𝑏) is contractible if there exists a continuous function
ℎ ∶ 𝑋 × [0, 1] → 𝑋 such that ℎ(𝑥, 0) = 𝑥 and ℎ(𝑥, 1) = 𝑏. Note that a pointed
convex subset of ℝ𝑛 is contractible, since in that case we can define ℎ(𝑥, 𝑡) =
(1 − 𝑡)𝑥 + 𝑡𝑏.

Exercise 90. Prove that contractibility of a pointed space does not depend on
the choice of the base point.

Because of Exercise 90, we will often speak of a contractible topological space,
without reference to a base point. Note, however, that for a space to be con-
tractible there must exists at least one choice of base point, which means that
contractible spaces are in particular non-empty.

Exercise 91. Prove that a contractible space is path connected.

Definition 9.2.3. A pointed space 𝑋 is said to be simply connected if it is path
connected, and 𝜋1(𝑋) is the trivial group.
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Exercise 92. Show that 𝑋 is simply connected if and only if every two paths in
𝑋 with the same endpoints are homotopic (relative to {0, 1}).

Exercise 93. Let 𝑋 be a path connected topological base, and 𝑏, 𝑏′ points in 𝑋.
Prove that (𝑋, 𝑏) is simply connected if and only if (𝑋, 𝑏′) is.

Because of Exercise 93, we will, just like for contractible spaces, speak of a simply
connected space without necessarily a reference to a base point. Explicitly, a
topological space 𝑋 is said to be simply connected if it is path connected, and
for all (or any) of its points 𝑏, the pointed spaced (𝑋, 𝑏) are simply connected.

Lemma 9.2.4. Let ℎ be a homotopy between two paths 𝛾 and 𝜎, not necessarily
relative to the endpoints. Let 𝛼 = ℎ0 and 𝛽 = ℎ1. Then 𝜎 and 𝛼−1 ∗ 𝛾 ∗ 𝛽 are
homotopic relative to the endpoints.

We give two proofs of Lemma 9.2.4. The first one constructs the homotopy
explicitly:

Proof. If 𝜌 is any path, let ̂𝜌 be defined by ̂𝜌(𝑠, 𝑡) = 𝜌(max{𝑠, 𝑡}). Then ̂𝜌 is
a homotopy between 𝜌 and the trivial loop at 𝜌(1), relative to {1}. Define a
homotopy 𝑘 such that

𝑘𝑡 ∶= ( ̂𝛼𝑡)−1 ∗ ℎ𝑡 ∗ ̂𝛽𝑡.
It is easy to see that 𝑘 is relative to {0, 1}. Furthermore 𝑘0 = 𝛼−1 ∗ 𝛾 ∗ 𝛽, and
𝑘1 = 𝜎.

The second proof uses the contractibility of convex subsets of ℝ𝑛:

Proof. Let 𝑙, 𝑟, 𝑡, 𝑏 be the left, right, top and bottom sides of the square 𝑄 ∶=
[0, 1] × [0, 1] respectively. Explicitly: 𝑙(𝑡) = (0, 𝑡), 𝑟(𝑡) = (1, 𝑡), 𝑡(𝑠) = (𝑠, 1),
𝑏(𝑠) = (𝑠, 0). Then clearly 𝛾 = ℎ ∘ 𝑏, 𝜎 = ℎ ∘ 𝑡, 𝛼 = ℎ ∘ 𝑙 and 𝛽 = ℎ ∘ 𝑙. Note
that 𝑙−1 ∗ 𝑏 ∗ 𝑟 ∗ 𝑡−1 is a loop in 𝑄, hence it is homotopic to a trivial loop. It
follows that 𝑡 ∼ 𝑙−1 ∗ 𝑏 ∗ 𝑟 (rel {0, 1}), and therefore 𝜎 ∼ 𝛼−1 ∗ 𝛾 ∗ 𝛽 (rel {0, 1})
by Exercise 86.

Proposition 9.2.5. If 𝑋 is a contractible space, then 𝑋 is simply-connected.

Proof. Let ℎ be a homotopy between the identity of 𝑋 and a constant. If 𝛾 is
a loop in 𝑋, define 𝑘 by 𝑘(𝑠, 𝑡) = ℎ(𝛾(𝑠), 𝑡). Then 𝑘 is a homotopy between 𝛾
and the trivial loop, but not necessarily relative to the endpoints. If 𝛼 = 𝑘0

and 𝛽 = 𝑘1, we get by Lemma 9.2.4 that 𝛾 is homotopic to 𝛼−1 ∗ 𝛽. Since 𝛾 is
a loop, 𝛼 = 𝛽, therefore 𝛾 is homotopic to a trivial loop.

Contractibility captures the idea that a space 𝑋 is essentially the same as a
single point, at least when reasoning up to homotopy, like when calculating 𝜋1.
We will now generalise this idea to other pairs of spaces.

Definition 9.2.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous function between topological
spaces. We say that 𝑓 is a homotopy equivalence if there exists a continuous
function 𝑔 ∶ 𝑌 → 𝑋 such that 𝑔 ∘𝑓 is homotopic to the identity of 𝑋, and 𝑓 ∘𝑔 is
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homotopic to the identity of 𝑌 . We say that 𝑋 and 𝑌 are homotopy equivalent
if there exists a homotopy equivalence between them.

The notion of homotopy equivalence is a straightforward generalisation of the
notion of homeomorphism, where we have replaced equality by homotopy. In
particular, homeomorphic spaces are homotopy equivalent, since homotopy is a
reflexive relation.

The advantage of introducing a more relaxed notion of equivalence between
spaces is that it turns out that in many situations homotopy equivalence is
enough to distinguish spaces. If we know that two spaces are not homotopy
equivalent, then this is sufficient to conclude that they are not homeomorphic.
The reason why this is useful in practice is that topological invariants such as the
fundamental group turn out to be also invariant under homotopy equivalence.

To see why this is the case, let us first examine the interaction between arbitrary
continuous functions and the fundamental group.

Definition 9.2.7. Let 𝑋 and 𝑌 be pointed topological spaces, with base points
𝑥 and 𝑦 respectively. A pointed map 𝑋 → 𝑌 is a continuous function 𝑓 ∶ 𝑋 → 𝑌
such that 𝑓(𝑥) = 𝑦.

It is clear that the identity of any topological space 𝑋 can be regarded as a
pointed map for any choice of a base point. Also, pointed maps can be composed
in the obvious way.

Proposition 9.2.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a pointed map between pointed spaces.
The map on loops 𝛾 ↦ 𝑓 ∘ 𝛾 determined by 𝑓 induces a group homomorphism
𝑓∗ ∶ 𝜋1(𝑋) → 𝜋1(𝑌 ).
Proof. If 𝛾 and 𝜌 are homotopic loops, then 𝑓 ∘ 𝛾 and 𝑓 ∘ 𝜌 are homotopic by
Exercise 86, hence the assignment 𝛾 ↦ 𝑓 ∘𝛾 determines a function 𝑓∗ ∶ 𝜋1(𝑋) →
𝜋1(𝑌 ), so we only need to verify that it is a homomorphism of groups.

In fact, if 𝑒 denotes the constant loop (on any base point), we have 𝑓 ∘𝑒 = 𝑒 and
𝑓 ∘ (𝛾 ∗ 𝜌) = (𝑓 ∘ 𝛾) ∗ (𝑓 ∘ 𝜌) directly from the definitions. Then, in particular, if
we write [𝛾] for the homotopy class of the loop 𝛾 in 𝜋1, we get 𝑓∗([𝑒]) = [𝑒] and
𝑓∗([𝛾][𝜌]) = 𝑓∗([𝛾])𝑓∗([𝜌]), as required.

Exercise 94. Show that the assignment 𝑓 ↦ 𝑓∗ defined in Proposition 9.2.8
satisfies the following functoriality properties:

id∗ = id,
(𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗.

One can summarise Exercise 94, together with the various constructions that
lead to it, by saying that 𝜋1 is a functor from the category of pointed topological
spaces to the category of groups.

We have constructed the induced homomorphism 𝑓∗ for pointed maps 𝑓 . How-
ever, if 𝑓 ∶ 𝑋 → 𝑌 is just a continuous function, we can still consider 𝑓∗ once we
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fix a base point 𝑥0 for 𝑋, by regarding 𝑓 as a pointed map (𝑋, 𝑥0) → (𝑌 , 𝑓(𝑥0)),
so that 𝑓∗ is a homomorphism 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑓(𝑥0)).
Proposition 9.2.9. Let 𝛼 be a path in 𝑋 connecting 𝑥1 with 𝑥2. Then the
assignment 𝛾 ↦ 𝛼−1 ∗𝛾∗𝛼 induces an isomorphism 𝜙𝛼 ∶ 𝜋1(𝑋, 𝑥1) → 𝜋1(𝑋, 𝑥2),
called the change of base point isomorphism.

Proof. If 𝛾 and 𝛾′ are homotopic loops on 𝑥1, then it is easy to see that 𝛼−1∗𝛾∗𝛼
and 𝛼−1 ∗𝛾 ∗𝛼 are homotopic as well. Therefore, the assignment 𝛾 ↦ 𝛼−1 ∗𝛾 ∗𝛼
uniquely determines a function 𝜙𝛼 ∶ 𝜋1(𝑋, 𝑥1) → 𝜋1(𝑋, 𝑥2). To show that it is
a group homomorphism, we simply calculate:

𝜙𝛼([𝑒]) = [𝛼−1 ∗ 𝑒 ∗ 𝛼] = [𝛼−1 ∗ 𝛼] = [𝑒]
𝜙𝛼([𝛾][𝜌]) = [𝛼−1 ∗ 𝛾 ∗ 𝜌 ∗ 𝛼] = [𝛼−1 ∗ 𝛾 ∗ 𝛼 ∗ 𝛼−1 ∗ 𝜌 ∗ 𝛼] = 𝜙𝛼([𝛾])𝜙𝛼([𝜌]).

Corollary 9.2.10. If 𝑋 is a path connected topological space, and 𝑥1, 𝑥2 two
points in 𝑋, then 𝜋1(𝑋, 𝑥1) ≅ 𝜋1(𝑋, 𝑥2).
Note, however, that the isomorphism between the two fundamental groups in
Corollary 9.2.10 is not uniquely determined, since it can depend on the choice
of a path between 𝑥1 and 𝑥2. For this reason, even when dealing with path
connected spaces, it is often best to make the choice of a base point explicit.

Lemma 9.2.11. Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be homotopic maps between topological
spaces, and let 𝑥0 be a base point for 𝑋. Then there exists an isomorphism
𝜙 ∶ 𝜋1(𝑌 , 𝑓(𝑥0)) → 𝜋1(𝑌 , 𝑔(𝑥0)) such that 𝑔∗ = 𝜙 ∘ 𝑓∗, i.e. the following diagram
is commutative:

𝜋1(𝑋, 𝑥0)
𝑓∗

wwppp
ppp

ppp
pp 𝑔∗

''OO
OOO

OOO
OOO

𝜋1(𝑌 , 𝑓(𝑥0)) 𝜙
// 𝜋1(𝑌 , 𝑔(𝑥0)).

Proof. Let ℎ be a homotopy between 𝑓 and 𝑔. Then in particular ℎ deter-
mines a path 𝛼 = ℎ𝑥0 between 𝑓(𝑥0) and 𝑔(𝑥0), hence we get a change of base
isomorphism 𝜙𝛼 ∶ 𝜋1(𝑌 , 𝑓(𝑥0)) → 𝜋1(𝑌 , 𝑔(𝑥0)).
Now, if 𝛾 is any loop at 𝑥0, define 𝑘(𝑠, 𝑡) = ℎ(𝛾(𝑠), 𝑡). Then 𝑘 is a homotopy
between 𝑓 ∘ 𝛾 and 𝑔 ∘ 𝛾, but not necessarily relative to the endpoints. Note,
however, that 𝛼 = 𝑘0 = 𝑘1. Lemma 9.2.4 then implies that 𝑔∘𝛾 = 𝛼−1∗(𝑓 ∘𝛾)∗𝛼,
and therefore 𝑔∗([𝛾]) = 𝜙𝛼(𝑓∗([𝛾])), as required.

Lemma 9.2.12. Let 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶, ℎ ∶ 𝐶 → 𝐷 be functions. If 𝑔 ∘ 𝑓
is invertible and ℎ ∘ 𝑔 is invertible, then all of 𝑓, 𝑔 and ℎ are also invertible.

Proof. Since 𝑔 ∘ 𝑓 is surjective, 𝑔 is also surjective. Since ℎ ∘ 𝑔 is injective, 𝑔 is
also injective. Therefore, 𝑔 is invertible. But then 𝑓 = 𝑔−1 ∘ (𝑔 ∘ 𝑓) must also be
invertible, and similarly for ℎ.
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Corollary 9.2.13. If 𝑓 ∶ 𝑋 → 𝑌 be a homotopy equivalence between spaces,
and 𝑥0 any point in 𝑋. Then 𝑓∗ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑓(𝑥0)) is an isomorphism
of groups.

Proof. Let 𝑔 ∶ 𝑌 → 𝑋 such that 𝑔 ∘ 𝑓 ∼ id and 𝑓 ∘ 𝑔 ∼ id. It then follows
from Lemma 9.2.11 that 𝑔∗ ∘ 𝑓∗ = (𝑔 ∘ 𝑓)∗ = 𝜙 ∘ id = 𝜙, where 𝜙 ∶ 𝜋1(𝑋, 𝑥0) →
𝜋1(𝑋, 𝑔(𝑓(𝑥0))) is an isomorphism. In particular, 𝑔∗ ∘ 𝑓∗ is an isomorphism, and
similarly 𝑓∗ ∘ 𝑔∗. It follows that 𝑓∗ is an isomorphism by Lemma 9.2.12.

9.3 Covering spaces

𝑈

𝑝−1(𝑈)

𝑝

ℝ
Let 𝑝 ∶ ℝ → 𝑆1 be the function defined by 𝑝(𝑡) = 𝑒2𝜋𝑖𝑡.
It follows from the property of the complex exponential
that 𝑝 is surjective and periodic of period 1, and that its
restriction to any open interval ]𝑎, 𝑏[ with 𝑏 − 𝑎 ≤ 1 is a
homeomorphism with its image.

In fact, more is true: for any point 𝜉 in the image 𝑆1,
there exists an open neighbourhood 𝑈 of 𝜉 whose inverse
image along 𝑝 is an open set of ℝ homeomorphic to 𝑈 ×ℤ,
with the function 𝑝 acting as the first projection. Indeed,
we can take 𝑈 to be any open neighbourhood of 𝜉 that
is not the entire circle.

We will abstract this idea into the notion of a covering
map. The underlying principle is that we can think of a
map like 𝑝 ∶ ℝ → 𝑆1 as a “family” of spaces indexed by
points of 𝑆1. For each point 𝜉 ∈ 𝑆1, the corresponding
set is the fibre of 𝑝 over it, i.e. the inverse image along 𝑝 of {𝜉}, which is this
case is a copy of the integers ℤ.

Definition 9.3.1. Let 𝑝 ∶ 𝐸 → 𝑋 be a continuous function between topological
spaces. We say that 𝑝 is a covering map if every point of 𝑋 is contained in an
open set 𝑈 such that the inverse image of 𝑈 along 𝑝 is a union:

𝑝−1(𝑈) = ⋃
𝛼∈𝐹

𝑉𝛼,

where 𝐹 is some non-empty set, the 𝑉𝛼 are disjoint open subsets of 𝐸, and 𝑝
induces a homeomorphism of 𝑉𝛼 with 𝑈 .

Such an open set 𝑈 is said to be evenly covered by 𝑝.

Exercise 95. Show that a covering map is surjective and open.

Exercise 96. Show that a homeomorphism is a covering map.

If 𝑝 ∶ 𝐸 → 𝑋 is a covering map, 𝐸 is said to be a covering space of 𝑋. We can
think of such a 𝑝 as representing a “locally constant” family of discrete spaces
over 𝑋, whose union is 𝐸. On every evenly covered open set 𝑈 in 𝑋, the family
is constantly equal to some set 𝐹 .
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In fact, if 𝑥 ∈ 𝑈 , then 𝑝−1(𝑥) consists of a point in 𝑉𝛼 for every element 𝛼 ∈ 𝐹 ,
and each of these points is the intersection of 𝑝−1(𝑥) with one of the 𝑉𝛼, hence
it is open in 𝑝−1(𝑥). So 𝑝−1(𝑥) is discrete and in bijection with 𝐹 , hence it
is homeomorphic to 𝐹 regarded as a discrete space. The following proposition
gives an alternative characterisation of the condition for an open set 𝑈 to be
evenly covered, which is sometimes easier to work with.

Proposition 9.3.2. Let 𝑝 ∶ 𝐸 → 𝑋 be a continuous function between topological
spaces. An open set 𝑈 ⊆ 𝑋 is evenly covered by 𝑝 if and only if there exists
a discrete space 𝐹 , and a homeomorphism 𝜙 ∶ 𝑈 × 𝐹 → 𝑝−1(𝑈) such that the
following diagram is commutative:

𝑈 × 𝐹 𝜙 //

𝜋
""E

EE
EE

EE
EE

𝑝−1(𝑈)

𝑝
||xx
xx
xx
xx
x

𝑈,

where 𝜋 ∶ 𝑈 × 𝐹 → 𝑈 is the first projection.

Proof. First of all, it is clear that 𝑈 is evenly covered by the first projection map
𝑈 ×𝐹 → 𝑈 whenever 𝐹 is discrete. Therefore, if 𝑈 satisfies the condition above,
it follows from the commutativity of the diagram that 𝑈 is evenly covered by 𝑝
as well.

Conversely, suppose 𝑈 is an evenly covered open subset of 𝑋, so that 𝑝−1(𝑈) =
⋃𝑥∈𝐹 𝑉𝑥 for a non-empty family of disjoint open subsets 𝑉𝑥 of 𝐸. Now define a
map 𝜙 ∶ 𝑝−1(𝑈) → 𝑈 × 𝐹 as follows: on every 𝑉𝛼, simply take 𝑝|𝑉𝛼 ∶ 𝑉𝛼 → 𝑈 ,
and glue all of those into a single map using Proposition 5.1.3. Conversely,
define 𝜓 ∶ 𝑈 × 𝐹 → 𝑝−1(𝑈) as 𝜓(𝑢, 𝛼) = (𝑝|𝑉𝛼)−1(𝑢), which is well-defined
and continuous because 𝑝|𝑉𝛼 is required to be a homeomorphism. It is clear
that 𝜙 and 𝜓 are inverses, hence they define the required homeomorphism. The
commutativity of the diagram above is immediate.

Corollary 9.3.3. The first projection 𝑋 × 𝐹 → 𝑋 is a covering map, for all
topological spaces 𝑋 and discrete spaces 𝐹 .

The following proposition shows that the fibre of a covering map to a connected
space does not depend on the point.

Proposition 9.3.4. Let 𝑋 be a connected space, and 𝑝 ∶ 𝐸 → 𝑋 a covering
map. Then there exists a discrete space 𝐹 such that 𝑝−1(𝑥) ≅ 𝐹 for all 𝑥 ∈ 𝑋.

Proof. Let 𝑥0 ∈ 𝑋 be an arbitrary point, and 𝐹 be the corresponding fibre. Let
𝑈 be the set of points 𝑥 in 𝑋 such that the fibre over 𝑥 is homeomorphic to
𝐹 . If 𝑥 ∈ 𝑈 , there exists an open neighbourhood 𝑉 of 𝑥 that is evenly covered
by 𝑝. It follows that the fibre of 𝑝 on 𝑉 is always homeomorphic to 𝑝−1(𝑥),
hence 𝑉 ⊆ 𝑈 . Therefore, 𝑈 is open. On the other hand, if 𝑥 ∉ 𝑈 , then by the
same argument there exists an open neighbourhood 𝑉 of 𝑥 such that the fibre
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over 𝑉 is not homeomorphic to 𝐹 , therefore 𝑈 is closed. Since 𝑈 contains 𝑥0,
it cannot be empty, hence by connectedness of 𝑋 it must be equal to 𝑋 itself,
as claimed.

It is very important to note that, although Proposition 9.3.4 says that the fibre
of a covering map 𝑝 ∶ 𝐸 → 𝑋 are in a sense always constant if 𝑋 is connected,
it does not imply that the covering space can be thought of as a projection map
from a product space 𝑋 × 𝐹 . Intuitively, we can always find a homeomorphism
between the fibre over any point 𝑥 ∈ 𝑋 and 𝐹 , but this homeomorphism cannot
necessarily be chosen “in a continuous way” as 𝑥 varies in 𝑋, only for 𝑥 in an
evenly covered open set.

The importance of covering spaces lies in their connection with the fundamental
group. For example, the covering map 𝑝 ∶ ℝ → 𝑆1 defined above makes it easy
to calculate the fundamental group of 𝑆1. In the following, we will regard the
circle as a pointed space by fixing 1 ∈ ℂ as its base point. We first prove that
covering maps have important lifting properties of paths and homotopies.

Proposition 9.3.5. Let 𝑝 ∶ 𝐸 → 𝑋 be a covering map, 𝑈 an evenly covered
open set in 𝑋 and 𝛾 a path in 𝑈 starting at 𝑥0. For any ̃𝑥0 ∈ 𝐸 such that
𝑝( ̃𝑥0) = 𝑥0, there exists a unique path ̃𝛾 in 𝐸 starting at ̃𝑥0 and such that
𝑝 ∘ ̃𝛾 = 𝛾. Such a path ̃𝛾 is called a lift of 𝛾.

Proof. Since 𝑈 is evenly covered, it is enough by Proposition 9.3.2 to find a lift
for the first projection 𝑈 × 𝐹 → 𝑈 starting from some point ̃𝑥0 ∈ 𝑈 × 𝐹 which
is mapped to 𝑥0. Such a point must then be of the form (𝑥0, 𝛼) for some 𝛼 ∈ 𝐹 .
Now let 𝜋′ ∶ 𝑈 × 𝐹 → 𝐹 be the second projection. If ̃𝛾 is a lift of 𝛾, then
𝜋′ ∘ ̃𝛾 must be constant, because [0, 1] is connected. Therefore, 𝜋′( ̃𝛾(𝑡)) = 𝛼
for all 𝑡 ∈ [0, 1]. It follows that ̃𝛾(𝑡) = (𝛾(𝑡), 𝛼), proving uniqueness. As for
existence, the equation above defines a continuous path ̃𝛾 on 𝑈 × 𝐹 which is
clearly mapped onto 𝛾.

Exercise 97. The previous result can be generalised to the situation where we
have a continuous function 𝑓 ∶ 𝐵 → 𝑋 for some connected space 𝐵, and a
“partial lift” of 𝑓 on a connected subspace 𝐴 of 𝐵, i.e. a continuous function
𝑔 ∶ 𝐴 → 𝐸 such that 𝑝 ∘ 𝑔 = 𝑓|𝐴. Use a similar argument as in the proof of
Proposition 9.3.5 to construct a function ℎ ∶ 𝐵 → 𝐸 that extends 𝑔 and such
that 𝑝 ∘ ℎ = 𝑓 .

Proposition 9.3.6. Let 𝑝 ∶ 𝐸 → 𝑋 be a covering map and 𝛾 a path in 𝑋
starting at 𝑥0. For any ̃𝑥0 ∈ 𝐸 such that 𝑝( ̃𝑥0) = 𝑥0, there exists a unique lift
̃𝛾 of 𝛾 starting at ̃𝑥0.

Proof. Let (𝑈𝑗)𝑗∈𝐽 be a cover of 𝑋 consisting of evenly covered open sets. Since
[0, 1] is compact, there exists a finite sequence 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 1 such
that every interval [𝑡𝑖, 𝑡𝑖+1] is mapped into one of the 𝑈𝑗 by 𝛾. We prove by
induction on 𝑖 that the restriction of 𝛾 to [0, 𝑡𝑖] has a unique lift ̃𝛾 such that
̃𝛾(0) = ̃𝑥0. This is clearly true for 𝑖 = 0. As for the inductive step, assume
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we know that the restriction of 𝛾 to [0, 𝑡𝑖] has a unique lift ̃𝛾, for 𝑖 < 𝑛. Note
that the restriction of 𝛾 to [𝑡𝑖, 𝑡𝑖+1] lies entirely into an evenly covered open
set, therefore we can find a unique lift 𝜌 of 𝛾|[𝑡𝑖, 𝑡𝑖+1] such that 𝜌(𝑡𝑖) = ̃𝛾(𝑡𝑖)
by Proposition 9.3.5. This implies that we can extend ̃𝛾 to [0, 𝑡𝑖+1], and the
uniqueness of 𝜌 implies that the extension is unique, concluding the proof.

What makes covering spaces useful in the calculation of homotopy groups is
that we can use them to lift not just paths, but also homotopies.

Proposition 9.3.7. Let 𝑝 ∶ 𝐸 → 𝑋 be a covering map, ℎ ∶ 𝐵 × [0, 1] → 𝑋
a homotopy between functions 𝑓, 𝑔 ∶ 𝐵 → 𝑋, and ̃𝑓 a lift of 𝑓, i.e. a function
𝐵 → 𝐸 such that 𝑝 ∘ ̃𝑓 = 𝑓. Then there exists a unique lift of ℎ to a homotopy
ℎ̃ in 𝐸 such that ℎ̃0 = ̃𝑓.

Proof. Let 𝑏 ∈ 𝐵 be any point. One can find a finite sequence 0 = 𝑡0 < 𝑡1 < ⋯ <
𝑡𝑛 = 1, and open neighbourhoods 𝑈𝑖 of 𝑏, such that 𝑈𝑖 ×[𝑡𝑖, 𝑡𝑖+1] is mapped into
an evenly covered open set of 𝑋. Let 𝑈 be the intersection of the 𝑈𝑖. Arguing
by induction, similarly to the proof of Proposition 9.3.6, we can then construct
a lift ℎ̃ for the restriction of ℎ on 𝑈 × [0, 1], with ℎ̃0 = ̃𝑓 on 𝑈 .

Varying 𝑏 in 𝐵, we get an open cover of 𝐵, and for each open set 𝑈 of the cover,
a lift of the restriction of ℎ to 𝑈 × [0, 1]. If 𝑈 and 𝑉 are two open sets in the
cover, and 𝑏 ∈ 𝑈 ∩ 𝑉 , then the two partial lifts are in particular lifts of the path
obtained by restricting ℎ to {𝑏} × [0, 1], hence they must coincide on points of
the form (𝑏, 𝑡) for all 𝑡, thanks to the uniqueness of Proposition 9.3.6. It follows
from Proposition 5.1.3 that all the partial lifts of ℎ can be glued into a lift of ℎ.

Uniqueness follows immediately, again from the uniqueness of Proposition 9.3.6
applied the paths obtained by restricting ℎ to {𝑏} × [0, 1], for all 𝑏 ∈ 𝐵.

Proposition 9.3.8. 𝜋1(𝑆1) ≅ ℤ.

Proof. For all 𝑛 ∈ ℤ, let 𝛾𝑛 be a loop on 1 that winds around the circle 𝑛
times, with positive winding being interpreted as travelling counter-clockwise,
and negative winding clockwise. Explicitly, we define the path ̃𝛾𝑛 on ℝ as
̃𝛾𝑛(𝑡) = 𝑛𝑡, and 𝛾𝑛 = 𝑝 ∘ ̃𝛾𝑛.

This determines a map 𝜙 ∶ ℤ → 𝜋1(𝑆1), defined as 𝜙(𝑛) = [𝛾𝑛]. To see that
𝜙 is a homomorphism, observe that ̃𝛾𝑛 ∗ ( ̃𝛾𝑚 + 𝑛) and ̃𝛾𝑛+𝑚 are both paths
connecting 0 with 𝑛 + 𝑚 in ℝ, hence they are homotopic relative to {0, 1} by
Exercise 92. Since 𝑝(𝑥 + 𝑛) = 𝑝(𝑥), it follows that 𝑝 ∘ ( ̃𝛾𝑚 + 𝑛) = 𝛾𝑚, and
therefore 𝛾𝑛 ∗ 𝛾𝑚 is homotopic to 𝛾𝑛+𝑚.

Now let 𝜌 be any loop on 1 in 𝑆1. By Proposition 9.3.6, there exists a lift ̃𝜌 of
𝜌 such that ̃𝜌(0) = 0. Then 𝑝( ̃𝜌(1)) = 𝜌(1) = 1, hence ̃𝜌(1) must be an integer
𝑛. Since ̃𝛾𝑛 and ̃𝜌 are homotopic (again because they have the same endpoints
and ℝ is simply connected), it follows that 𝜙(𝑛) = [𝛾𝑛] = [𝜌], showing that 𝜙 is
surjective.
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As for injectivity, suppose 𝜙(𝑛) = 𝑒, where 𝑒 is the class of the trivial loop in
𝜋1(𝑆1). That implies that there exists a homotopy ℎ between the trivial loop
and 𝛾𝑛. By Proposition 9.3.7, ℎ can be lifted to a homotopy ℎ̃ between the
trivial path in ℝ on 0 and some lifting ̃𝜌 of 𝛾𝑛. Since the homotopy is relative
to {0, 1}, we must have ̃𝜌(1) = 0. But ̃𝜌 must also be homotopic to ̃𝛾𝑛, hence

̃𝜌(1) = 𝑛. It follows that 𝑛 = 0, as required.

9.4 A special case of Seifert-van Kampen theorem
The Seifert-van Kampen theorem can be used to calculate the fundamental
group of a union of two open sets 𝑈 and 𝑉 in terms of the fundamental groups
of 𝑈 , 𝑉 and 𝑈 ∩ 𝑉 . In this subsection, we will prove the special case of the
theorem where both 𝑈 and 𝑉 are simply connected, which is already very useful,
and will help us prove that some of the examples of spaces we have seen so far
are simply connected.

Theorem 9.4.1. Let 𝑋 be a topological space, suppose that 𝑋 is covered by two
simply connected open sets 𝑈 and 𝑉 , and that 𝑈 ∩ 𝑉 is path connected. Then
𝑋 is simply connected.

Proof. Let 𝑏 ∈ 𝑈 ∩ 𝑉 be any point, and take 𝑏 to be the base point of 𝑋. Let
𝛾 be a loop in 𝑋 at 𝑏. The two open sets 𝛾−1(𝑈) and 𝛾−1(𝑉 ) cover [0, 1]. By
compactness, there exist a finite number of points 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 1
such that for all 0 ≤ 𝑖 < 𝑛, 𝛾|[𝑡𝑖, 𝑡𝑖+1] is valued either in 𝑈 or 𝑉 . Let 𝛾𝑖 be
the reparameterisation of 𝛾|[𝑡𝑖, 𝑡𝑖+1] to [0, 1]. Then it is easy to see that 𝛾 is
homotopic to the concatenation of the 𝛾𝑖. By removing some of the 𝑡𝑖, we can
assume that if 𝛾𝑖 has values in 𝑈 , then 𝛾𝑖+1 has values in 𝑉 , and vice versa. In
particular, 𝛾(𝑡𝑖) ∈ 𝑈 ∩ 𝑉 for all 𝑖.
For all 0 < 𝑖 < 𝑛, let 𝛼𝑖 be a path in 𝑈 ∩ 𝑉 from 𝑏 to 𝛾(𝑡𝑖). Set 𝛼0 and 𝛼𝑛
to be the trivial loop at 𝑏. Define 𝛾′

𝑖 ∶= 𝛼𝑖 ∗ 𝛾𝑖 ∗ 𝛼−1
𝑖 . Then 𝛾′

𝑖 is a loop at 𝑏
for all 𝑖. Furthermore, since 𝛼−1

𝑖 ∗ 𝛼𝑖+1 is a loop in 𝑈 ∩ 𝑉 , we can in particular
regard it as a loop in 𝑈 , hence it is homotopic to a trivial loop. In particular,
the concatenation of all the 𝛾′

𝑖 defines a loop 𝛾′ in 𝑋 which is homotopic to 𝛾.

Since 𝑈 and 𝑉 are simply connected, all the loops 𝛾′
𝑖 are homotopic to the trivial

loop at 𝑏, hence so is 𝛾′, proving that 𝑋 is simply connected.

Lemma 9.4.2. Let 𝑋 be any pointed space. Then 𝐶𝑋 is contractible.

Proof. We define an explicit homotopy between the identity on 𝐶𝑋 and a con-
stant. Namely, ℎ([𝑥, 𝑠], 𝑡) = [(𝑥, 1 − (1 − 𝑠)𝑡)]. Note that ℎ is well defined, since
if 𝑠 = 1, then 1 − (1 − 𝑠)𝑡 = 1 for all 𝑡. Furthermore, ℎ([𝑥, 𝑠], 0) = [(𝑥, 1)], hence
ℎ0 is a constant map, and ℎ([𝑥, 𝑠], 1) = [𝑥, 𝑠], hence ℎ1 is the identity.

Proposition 9.4.3. Let 𝑋 be a path connected space. Then the suspension 𝑆𝑋
is simply connected.
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Proof. Write 𝑆𝑋 = 𝑈+ ∪𝑈−, where 𝑈+ and 𝑈− are open sets containing the two
copies 𝐶+𝑋 and 𝐶−𝑋 of 𝐶𝑋 as in Proposition 5.4.8. Now, 𝐶+𝑋 and 𝐶−𝑋 are
both contractible, and it is easy to see that the inclusion of 𝐶+𝑋 (resp. 𝐶−𝑋) in
𝑈+ (resp. 𝑈−) is a homotopy equivalence. Their intersection is homeomorphic
to 𝑋 × ℝ, which is path connected. We can therefore apply Theorem 9.4.1 and
conclude that 𝑆𝑋 is simply connected.

Corollary 9.4.4. The sphere 𝑆𝑛 is simply connected for 𝑛 > 1.

Proof. By Exercise 53, 𝑆𝑛 = 𝑆𝑆𝑛−1. If 𝑛 > 1, then 𝑆𝑛−1 is path connected,
and therefore 𝑆𝑛 is simply connected by Proposition 9.4.3.

9.5 Applications
Knowledge of the fundamental group of spheres can be directly applied to the
problem of distinguishing some Euclidean spaces.

Proposition 9.5.1. Let 𝑛 > 2, then ℝ𝑛 is not homeomorphic to ℝ2.

Proof. Let 𝜙 ∶ ℝ𝑛 → ℝ2 a homeomorphism. Then 𝜙 induces a homeomorphism
ℝ𝑛 ∖ {0} → ℝ2 ∖ {0}. It is easy to see that ℝ𝑘 ∖ {0} is homotopy equivalent to
𝑆𝑘−1 for all 𝑘 > 0, hence in particular ℝ𝑛 ∖ {0} is simply-connected, whereas ℝ2

has ℤ as fundamental group, so they cannot be homeomorphic.

The idea of Proposition 9.5.1 could be extended to higher dimensional spaces,
if only we had access to an invariant which is non-trivial for the 𝑚-sphere, and
trivial for higher-dimensional spheres. Such invariants do indeed exist. The
simplest example is the 𝑚-th homology group, which is quite easy to calculate
(at least for spheres), and is sufficient for this purpose. Another is given by the
higher homotopy group 𝜋𝑚, which is the natural generalisation of the funda-
mental group. Homotopy groups are much harder to calculate, even for spheres,
but they sometimes provide more information on the underlying spaces.

Another simple application of homotopy groups is the famous Brouwer’s fixed
point theorem:

Theorem 9.5.2. Let 𝑓 ∶ 𝐷2 → 𝐷2 be a continuous map. Then 𝑓 has a fixed
point.

Proof. By contradiction, assume that 𝑓 has no fixed points. For 𝑥 ∈ 𝐷2, trace a
half-line starting from 𝑓(𝑥) and going through 𝑥, and let 𝑔(𝑥) be the intersection
of this half-line with the circle 𝑆1. By writing out an explicit formula for 𝑔(𝑥),
it is easy to see that 𝑔 is a continuous function 𝐷2 → 𝑆1, and if 𝑥 ∈ 𝑆1, then
𝑔(𝑥) = 𝑥.

In other words, if 𝑖 ∶ 𝑆1 → 𝐷2 is the inclusion function, we have that 𝑔 ∘ 𝑖 = id.
By Exercise 94, it follows that 𝑔∗ ∘ 𝑖∗ = id, where 𝑔∗ and 𝑖∗ are the corresponding
maps on the fundamental groups.
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However, 𝐷2 is contractible, which implies that 𝑖∗ (and hence 𝑔∗ ∘ 𝑖∗) is the
zero map. It follows that the identity ℤ → ℤ is the zero map, which is a
contradiction.

Using covering spaces, and the fact that 𝑆𝑛 is simply connected for all 𝑛 > 1,
we can now calculate the fundamental group of real projective spaces.

Lemma 9.5.3. Let 𝑝 ∶ 𝐸 → 𝑋 be a covering space, with 𝑋 path connected, and
let 𝑏 ∈ 𝑋 be a base point. Then 𝜋1(𝑋, 𝑏) acts on the fibre 𝐹 of 𝑝 over 𝑏. The
action is transitive if and only if 𝐸 is path connected. The action is free if and
only if 𝜋1(𝐸, 𝑢) is trivial for all 𝑢 ∈ 𝐹 .

Proof. If 𝛾 is a loop at 𝑏, and 𝑢 ∈ 𝐹 , let ̃𝛾𝑢 be the unique lift of 𝛾 to 𝐸 with
̃𝛾𝑢(0) = 𝑢. It follows from Proposition 9.3.7 that ̃𝛾𝑢(1) only depends on the

homotopy class of 𝛾 in 𝜋1(𝑋, 𝑏), hence the assignment (𝑢, [𝛾]) ↦ 𝑢 · [𝛾] ∶= ̃𝛾𝑢(1)
defines a map 𝐹 × 𝜋1(𝑋, 𝑏) → 𝐹 , which we take to be the (right) action of
𝜋1(𝑋, 𝑏) on 𝐹 .

If 𝛾 is the trivial loop, then ̃𝛾𝑢 can be chosen to be the trivial loop at 𝑢, hence
in particular ̃𝛾𝑢(1) = 1, which implies that 𝑢 · 𝑒 = 𝑢, where 𝑒 is the unit element
of 𝜋1(𝑋, 𝑏).
If 𝛾 and 𝜎 are loops at 𝑏, the path ̃𝛾𝑢 ∗ �̃��̃�𝑢(1) is a lift of 𝛾 ∗ 𝜎. Therefore,
𝑢 · [𝛾 ∗ 𝜎] = �̃��̃�𝑢(1)(1) = ̃𝛾𝑢(1) · [𝜎] = (𝑢 · [𝛾]) · [𝜎], which completes the proof that
𝜋1(𝑋, 𝑏) acts on 𝐹 .

Now assume that 𝐸 is path connected, and let 𝑢, 𝑣 ∈ 𝐹 . Let ̃𝛾 be a path
connecting 𝑢 and 𝑣 in 𝐸, and 𝛾 = 𝑝 ∘ ̃𝛾 its projection in 𝑋. Then ̃𝛾 is clearly a
lift of 𝛾 starting in 𝑢, hence 𝑢· [𝛾] = 𝑣, which shows that the action is transitive.
Conversely, assume that the action is transitive, and let 𝑢, 𝑣 ∈ 𝐸. We want
to find a path in 𝐸 connecting 𝑢 and 𝑣. Since 𝑋 is path connected, we can
assume that 𝑢, 𝑣 ∈ 𝐹 , thanks to Proposition 9.3.6. By transitivity, there exists
[𝛾] ∈ 𝜋1(𝑋, 𝑏) such that 𝑢 · [𝛾] = 𝑣, which means that ̃𝛾𝑢 connects 𝑢 and 𝑣, as
desired.

As for the last statement, assume that 𝜋1(𝐸, 𝑢) is trivial, and let [𝛾] ∈ 𝜋1(𝑋, 𝑏)
be such that 𝑢 · [𝛾] = 𝑢. Then ̃𝛾𝑢 is a loop at 𝑢, which implies that it is
homotopic to the trivial loop. Therefore 𝛾 is also homotopic to the trivial loop,
hence [𝛾] = 𝑒. Conversely, suppose that the action is free, and let ̃𝛾 be a loop at
𝑢 ∈ 𝐹 . If 𝛾 = 𝑝 ∘ ̃𝛾, then ̃𝛾 is a lift of 𝛾, hence 𝑢 · [𝛾] = ̃𝛾(1) = 𝑢, and hence 𝛾 is
homotopic to the trivial loop by freeness. It then follows from Proposition 9.3.7
that ̃𝛾 must also be homotopic to a trivial loop.

Corollary 9.5.4. Let 𝑝 ∶ 𝐸 → 𝑋 be a covering space where 𝐸 is simply con-
nected. Then for any base point 𝑏 ∈ 𝑋, the action of 𝜋1(𝑋, 𝑏) on the fibre 𝐹 over
𝑏 is free and transitive, hence in particular there is a bijection 𝜋1(𝑋, 𝑏) ≅ 𝐹 .

Corollary 9.5.4 generalises Proposition 9.3.8, and allows us to directly calculate
the fundamental groups of real projective spaces.
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Proposition 9.5.5. For all 𝑛 > 1, 𝜋1(ℝ𝑃 𝑛) = ℤ/2ℤ.

Proof. It is easy to see that the quotient projection 𝑆𝑛 → ℝ𝑃 𝑛 is a covering
map. Since 𝑆𝑛 is simply connected for 𝑛 > 1, it follows from Corollary 9.5.4
that 𝜋1(ℝ𝑃 𝑛) has two elements, hence it must be isomorphic to the cyclic group
ℤ/2ℤ.

As an immediate consequence, ℝ𝑃 1 is the only real projective space that is
equivalent to a sphere.

As a final application of the results we have proved about the fundamental
group, we give a proof of the famous Borsuk-Ulam theorem, which is often
stated as: at any point in time, there exist two antipodal points on Earth that
have the same temperature and pressure.

Theorem 9.5.6. If 𝑓 ∶ 𝑆2 → ℝ2 is a continuous function, there exists 𝑥 ∈ 𝑆2

such that 𝑓(𝑥) = 𝑓(−𝑥).
Proof. By contradiction, assume that for all 𝑥 ∈ 𝑆2 we have 𝑓(𝑥) ≠ 𝑓(−𝑥).
That allows us to define a continuous function 𝑔 ∶ 𝑆2 → 𝑆1 as

𝑔(𝑥) = 𝑓(𝑥) − 𝑓(−𝑥)
‖𝑓(𝑥) − 𝑓(−𝑥)‖ ,

which satisfies 𝑔(−𝑥) = −𝑔(𝑥). Let 𝑔 ∶ ℝ𝑃 2 → ℝ𝑃 1 be the map induced by 𝑔
on projective spaces, and let 𝑝 denote the projection 𝑆𝑛 → ℝ𝑃 𝑛.

If 𝑏 is any base point on 𝑆2, let 𝜎 be a path from 𝑏 to −𝑏 such that 𝑝∗([𝜎])
generates 𝜋1(ℝ𝑃 2). For example, one can take

𝜎(𝑡) = (cos(𝜋𝑡), sin(𝜋𝑡), 0).

Since 𝑔∗ ∶ ℤ/2ℤ → ℤ must be the zero map, it follows that 𝑝∗(𝑔∗([𝜎])) is the
unit of 𝜋1(ℝ𝑃 1), hence 𝑝 ∘ 𝑔 ∘ 𝜎 is homotopic to a trivial loop. Therefore, its lift
𝑔 ∘ 𝜎 along the covering map 𝑝 must also be a loop.

However, 𝑔(𝜎(1)) = 𝑔(−𝑏) = −𝑔(𝑏) = 𝑔(𝜎(0)), which shows that 𝑔 ∘ 𝜎 is not a
loop. Contradiction.
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