
First Year PhD Report

Type Theory through Comprehension
Categories

Author:
Paolo C

Supervisor:
Venanzio C

July 12, 2013

Contents

Preface 3

1 Models of type theory 5

1.1 Introduction . 5

1.2 Locally cartesian closed categories 10

1.3 Grothendieck fibrations . 12

1.4 Comprehension categories . 17

1.5 Strictification . 19

1.6 Other structures . 21

1.7 Contextualisation . 22

2 Dependent sums and products 25

2.1 Strictification of sums and products 26

3 Intensional equality 28

3.1 Trivial cofibrations . 29

3.2 Weak equivalences . 30

3.3 Extensional equality . 31

4 Universes 34

4.1 Type formers in a restricted model 35

1

5 Examples 38

5.1 Set model . 38

5.2 Groupoid model . 38

5.3 Presheaf models . 39

5.4 Models in strict ω-categories . 42

2

Preface

This report is an exposition of some of the topics I explored during my first year as
a PhD student, and focuses on a purely semantic presentation of type theory and
its models.

The main goal of this report is to summarise the most basic results of categori-
cal models of dependent type theory, including an analysis of the issue of strict
functoriality of substitution in comprehension categories.

I do not make many claims of originality, but I try to make the presentation as
uniform as possible, rely on categorical language and techniques (such as bicate-
gories and profunctors), and take a more conceptual approach, as opposed to the
traditional one based on syntax.

The outline is as follows: in chapter 1 I give an informal introduction to the con-
cepts involved in modelling type theory, culminating in the definition of compre-
hension categories, which are the main object of study in this report.

In chapter 2 I define dependent sums and products for comprehension categories,
and state important strictification results (propositions 2.1.2 and 2.1.3).

In chapter 3, intensional identity types are introduced. Following [4], I show how
to use identity types to construct a weak factorisation system. Here I apply the
original idea of “contextualisation”, introduced in chapter 1, which makes it pos-
sible to generalise the result to any split comprehension category.

Chapter 4 is a brief introduction to the idea (due to Vladimir Voevodsky) of using
universes to define split comprehension categories out of non-split ones, as an
alternative to the strictification construction obtained in proposition 1.5.2.

Finally, chapter 5 is a collection of basic examples that serve as a foundation for
richer and more important models like the one on Kan fibrations in [10]. I sketch
the construction of the groupoid model [8], and give an original definition of uni-
verse for presheaf models.

3

I also sketch the outline of a new model construction on strict ω-categories which
Thorsten Altenkirch and I are currently working on. Developing this model in
full, and exploring the possibility of turning it into an implementation of Homo-
topy Type Theory with the canonicity property, are going to be some of the main
objectives of the remainder of my PhD.

Acknowledgements

I am indebted to the members of the Functional Programming Laboratory in Not-
tingham, for countless hours of very fruitful discussion on type theory and related
topics.

In particular, I would like to thank Thorsten Altenkirch, Ambrus Kaposi, Nicolai
Kraus, Christian Sattler, and, of course, my supervisor Venanzio Capretta.

4

Chapter 1

Models of type theory

1.1 Introduction

In this chapter, we will introduce a variety of models of type theory. We will start
in the simplest and most direct way, which will naturally lead us to the notion of
locally cartesian closed category. From there, we will look at possible generalisations,
and address the problem of non-strict functoriality of substitution.

To motivate the following definitions, however, we will begin by exploring the
basic concepts of intuitive type theory, and show how their desired properties
translate directly into categorical structures.

Contexts

The fundamental notion of type theory is that of dependent type. For the idea of de-
pendent type to even make sense, however, we first need to state what it is exactly
that a type can depend on. This is how we arrive to the notion of context.

A context represents a list of assumptions, each assumption being essentially made
up of variable name and a type. Every theorem is always stated and proven rela-
tively to some context.

Whenever, in informal mathematics, we say something like “let 𝑛 be a natural num-
ber, 𝑅 a commutative ring, and 𝑀 a free 𝑅-module of rank 𝑛”, we are effectively defining
a context Γ containing the three variables 𝑛, 𝑅, and 𝑀 , having the stated types.

This simple example already shows one important characteristic of contexts: the

5

type of a variable is allowed to depend on previously introduced variables. That
is, of course, essential if we want to model the idea of dependent types.

Despite the intuition of contexts being essentially lists of pairs, in the following
we will take a more axiomatic approach: we will take a collection of contexts 𝒞 as
given, and work out the structure that this collection ought to possess in order to
model the intuitive idea described above.

Morphisms

It is natural to require that contexts form a category.

In fact, assumptions can intuitively be instantiated in the context given by some
other assumptions. For example, if Γ denotes the context defined above, with
variables 𝑛, 𝑅, 𝑀 , and Δ is the context in which we have a natural number 𝑚,
and field 𝑘, we can “interpret” Γ into Δ by setting, for example,

⎧
⎨⎩

𝑛 ↦ 𝑚
𝑅 ↦ 𝑘
𝑀 ↦ 𝑘ֈ

(1.1)

This would define a morphism from Δ to Γ in the category 𝒞. We will see later,
once we have a complete definition of comprehension category, how to make a
morphism definitions like (1.1) precise.

If the category 𝒞 has a (distinguished) terminal object •, we call • the empty con-
text, and think of it as the context where no assumptions have been made. This is
consistent with our interpretation, as there should be a unique way to instantiate
the empty context in any other context.

Types

Now we can finally move to the central concept: types. Given a context Γ, a type
𝜎 over Γ should be defined as something that allows one to talk about:

• the context extension Γ.𝜎, which is to be thought of as the result of adding a
new variable of type 𝜎 to the existing context Γ

• the display map 𝑝ᇋ ∶ Γ.𝜎 → Γ, which is the interpretation of the extended
context into the original one obtained by simply “forgetting” about the extra
variable.

6

Note that the above data is exactly what is required to give an object of the slice
category 𝒞/Γ. Therefore, any type should determine such an object.

To make this precise in the most general sense, we will need the notion of fibration,
introduced in section 1.3. To motivate the general definition, however, we will first
leave things at an intuitive level, assume that we have a way to map types over Γ
(whatever they are) to objects in 𝒞/Γ, and investigate the structure and properties
that this mapping should have.

Terms

Definition 1.1.1. Given a type 𝜎 over the context Γ, a term 𝑀 of type 𝜎 is a mor-
phism

𝑀 ∶ Γ → Γ.𝜎
that is a section of the display map 𝑝ᇋ, i.e. such that 𝑝ᇋ ∘ 𝑀 = id.

The idea of this definition is that a term of type 𝜎 is defined to be exactly what
is required to give an interpretation of the extended context Γ.𝜎 in the context Γ.
The property of being a section says that the interpretation does not touch any of
the other assumptions.

To express the fact that 𝑀 is term of type 𝜎 over the context Γ, we will write the
judgement

Γ ⊢ 𝑀 ∶ 𝜎
or simply 𝑀 ∶ 𝜎, when the context is clear.

Substitutions

Given a morphism 𝑓 ∶ Δ → Γ, which we regard as a way to interpret the assump-
tions in Γ in terms of the assumptions in Δ, there should be a way to transport
types and terms over Γ to, respectively, types and terms over Δ. In fact, if the con-
text Γ can be interpreted in Δ, then everything we can state and prove in Γ should
make sense in Δ as well.

In particular, given a type 𝜎 over Γ, there should exist a type 𝑓∗𝜎 over Δ, and a
morphism 𝑞(𝑓, 𝜎) ∶ Δ.𝑓∗𝜎 → Γ.𝜎, which we refer to as 𝑓 extended with 𝜎.

7

The property of being able to transport terms of type 𝜎 to terms of type 𝑓∗𝜎 can
be expressed concisely by requiring that the following square

Δ.𝑓∗𝜎(ցӴᇋ) //

Ջ∗ᆡ
��

Γ.𝜎
ᆡ
��

Δ ց // Γ

(1.2)

be a pullback.

In fact, the commutativity property states that the extended morphism behaves
like 𝑓 on the assumptions in Δ, while the universal property of the pullback is
equivalent to saying that terms 𝑀 of type 𝜎 can be uniquely transported to terms
of type 𝑓∗𝜎 in a way that is compatible with the extended morphism 𝑞(𝑓, 𝜎).
If 𝒞 has (distinguished) pullbacks, every 𝑓 ∶ Δ → Γ determines a functor 𝑓∗ ∶
𝒞/Γ → 𝒞/Δ, so the condition above can be expressed in any such category. We
refer to 𝑓∗ as the pullback (or substitution, or reindexing) functor.

Dependent products

In order to define a notion of “function” internal to the theory, we need to be able,
given types 𝜎 and 𝜏 over some context Γ, to define a type 𝜎 → 𝜏 , whose terms can
be thought of as functions from 𝜎 to 𝜏 .

More generally, given a type 𝜎 over Γ, and a type 𝜏 over Γ.𝜎, we want to define a
type of dependent functions from 𝜎 to 𝜏 , the so called dependent product of 𝜎 and 𝜏 ,
which we denote by Πᇋ𝜏 .

Terms of Πᇋ𝜏 can be thought of as function whose result type depends on the
argument.

To define dependent products rigorously, we observe that a function of an argu-
ment of type 𝜎 should be uniquely characterised by the value it assumes on a
“generic” variable of type 𝜎. That means that there is a bijective correspondence
between terms of type Πᇋ𝜏 over the context Γ, and terms of type 𝜏 over the context
Γ.𝜎.

This condition can be summed up concisely by saying that Πᇋ should be a right
adjoint of the substitution functor 𝑝∗

ᇋ.

Unfortunately, we cannot really make this definition precise, as 𝑝∗
ᇋ is a functor

between slice categories, while Πᇋ should be a mapping of types. We will gloss
over this issue for now, and refer to chapter 2 for a precise definition.

8

The simplified presentation of dependent products given above, however, does
motivate the following definition:

Definition 1.1.2. Let 𝒞 be a category with pullbacks, and 𝑓 ∶ Δ → Γ a morphism
in 𝒞. We say that 𝑓 is exponentiable if the pullback functor 𝑓∗ ∶ 𝒞/Γ → 𝒞/Δ has
a right adjoint.

Example 1.1.3. Every morphism is exponentiable in 𝑆𝑒𝑡. This could be proven di-
rectly, but it is going to be a simple consequence of proposition 1.2.2 below, so we
delay the proof for now.

Dependent sums

The idea of dependent sum generalises the notion of binary product.

Given a type 𝜎 over Γ, and a type 𝜏 over Γ.𝜎, the dependent sum of 𝜎 and 𝜏 ,
denoted Σᇋ𝜏 , intuitively represents the Γ-type of all pairs of terms 𝑀 and 𝑁 ,
with 𝑀 ∶ 𝜎 and 𝑁 ∶ 𝑀∗𝜏 . Categorically, that means that functions from Σᇋ𝜏
should be determined by functions from 𝜏 in the context Γ.𝜎.

Therefore, we require Σᇋ to be the left adjoint of the substitution functor 𝑝∗
ᇋ ∶

𝒞/Γ → 𝒞/Γ.𝜎. This definition is entirely dual to the one of dependent product
before.

As for dependent products, we are glossing over the fact that types are, in general,
separate from objects of slice categories, and more rigorous presentation will be
developed in chapter 2.

Indeed, the simplified notion of dependent sum as presented here is weak enough
that it can be defined in any category with pullbacks.

Definition 1.1.4. Let 𝒞 be a category with pullbacks. Given a morphism 𝑓 ∶ Δ →
Γ, we denote by Σց ∶ 𝒞/Δ → 𝒞/Γ the functor given by precomposition with 𝑓 .

Proposition 1.1.5. Let 𝒞 be a category with pullbacks. For any morphism 𝑓 ∶ Δ → Γ, the
pullback functor 𝑓∗ ∶ 𝒞/Γ → 𝒞/Δ is right adjoint to Σց ∶ 𝒞/Δ → 𝒞/Γ.

Proof. For 𝑔 ∶ 𝐴 → Δ and ℎ ∶ 𝐵 → Γ, we need to find an isomorphism

𝒞/Γ(𝑓 ∘ 𝑔, ℎ) ≅ 𝒞/Δ(𝑔, 𝑓∗ℎ), (1.3)

natural in 𝑓 and 𝑔.

9

The left hand side is the set of all morphisms 𝐴 → 𝐵 that make the following
diagram commute:

𝐴 //

ւ
��

𝐵
փ
��

Δ ց
// Γ

By the universal property of the pullback of ℎ along 𝑓 , each such morphism
uniquely determines a morphism 𝐴 → 𝐵 ×ဴ Δ over Δ, i.e. an element of the set
on the right hand side of (1.3).

This defines the isomorphism in (1.3), whose naturality is then easy to verify.

The following lemma will be useful later.

Lemma 1.1.6. Let 𝒞 be a category with pullbacks, and 𝑓 ∶ Δ → Γ any morphism. The
functor Σց is comonadic.

Proof. The functor Σց has a right adjoint by proposition 1.1.5. Furthermore Σց
clearly reflects isomorphisms, and it is not hard to see that it preserves equalisers.
Therefore, Σց is comonadic by the dual of Beck’s monadicity theorem (see for
example [2]).

1.2 Locally cartesian closed categories

The most direct way to formalise the ideas presented in section 1.1 is to define
types directly as objects of a slice category. This approach was first explored by
Seely ([14]).

The biggest advantage of this approach is that the simplified definitions of depen-
dent sums and products given above do actually make sense. Since we are mostly
interested in modelling a type theory that does have sums and products, it is nat-
ural to restrict ourselves to categories for which the dependent product functor is
defined.

Definition 1.2.1. A locally cartesian closed category is a category with pullbacks
where every morphism is exponentiable.

The choice of terminology is motivated by the following characterisation:

10

Proposition 1.2.2. Let 𝒞 be a category with pullbacks. The following conditions are equiv-
alent:

• 𝒞 is locally cartesian closed

• all slice categories of 𝒞 are cartesian closed

Proof. Clearly all slices are cartesian, since products in a slice category are pull-
backs in 𝒞.

Let Γ be an object of 𝒞, and 𝑓 ∶ Δ → Γ an object in 𝒞/Γ. The fibred product
functor − ×ဴ Δ can be factored as:

𝒞/Γ ց∗
// 𝒞/Δ ်Ջ // 𝒞/Γ

Slice categories of 𝒞/Γ are cartesian closed if and only if all such fibred product
functors have right adjoints.

Since Σց is comonadic by Lemma 1.1.6, the adjoint lifting theorem (see [2]) implies
that this condition is equivalent to 𝑓∗ having a right adjoint, that is, to 𝒞 being
locally cartesian closed.

As promised, we can now prove the result stated in example 1.1.3.

Proposition 1.2.3. The category 𝖲𝖾𝗍 is locally cartesian closed.

Proof. For any set 𝑋, the category 𝖲𝖾𝗍/𝑋 is isomorphic to the presheaf category
[𝑋, 𝖲𝖾𝗍] where 𝑋 is regarded as a discrete category.

Since presheaf categories are cartesian closed, 𝖲𝖾𝗍 is locally cartesian closed by
proposition 1.2.2.

Substitution in locally cartesian closed categories

If 𝒞 is a locally cartesian closed category, then all the constructions in section 1.1
are well defined. So in the following we will refer to objects of 𝒞 as contexts, objects
in 𝒞/Γ as types over Γ, and sections of types as terms.

Given contexts Γ and Δ in 𝒞, and a type 𝜎 over Γ, let us examine the mapping
given by 𝑓 ↦ 𝑓∗𝜎, for morphisms 𝑓 ∶ Δ → Γ. Clearly, this mapping is functorial
modulo unique isomorphisms, i.e. given 𝑓 ∶ Δ → Γ, and 𝑔 ∶ Θ → Δ,

𝑔∗(𝑓∗𝜎) ≅ (𝑓 ∘ 𝑔)∗𝜎

11

Of course, we cannot expect the above isomorphism to be an identity in general.
We say therefore that pullbacks are not strictly functorial. Indeed, in most ex-
amples of locally cartesian closed categories (including 𝖲𝖾𝗍), there is no choice of
pullbacks for which this property holds.

Strict functoriality is, however, a desirable property for a model of type theory. In
fact, if we think of types as some sort of syntactic construct, i.e. built inductively
out of a few basic primitives, pullbacks corresponds to syntactic substitutions, which
are clearly strictly functorial.

To better reflect the properties of such syntactic constructs1, therefore, we need to
expand the class of categories that we are interested in, as to include structures for
which the corresponding notion of substitution is strictly functorial.

The basic idea, expanded and made precise in the following sections, is to separate
the notions of type and object of a slice category.

1.3 Grothendieck fibrations

In 𝖲𝖾𝗍, it is easy to see that, given an object 𝑋, families indexed over 𝑋 are the same
as functions to 𝑋. We already made use of this fact in the proof of proposition 1.2.3.

For categories, this doesn’t work equally well. In particular, given a functor 𝑝 ∶
ℰ → 𝒞, although we can still define a function 𝒞 → 𝖢𝖺𝗍 that assigns to every
object 𝑥 ∶ 𝒞, the fibre of 𝑝 over 𝑥, there doesn’t seem to be any way to extend it to a
functor.

The aim of this section is to define a subclass of functors, called fibrations, such
that the correspondence between slices and presheaves that we have for 𝖲𝖾𝗍 can
be generalised to an equivalence of 2-categories:

Fibrations over 𝒞 ≅ Pseudofunctors 𝒞πό → 𝖢𝖺𝗍 (1.4)

To motivate the definition of fibration, we begin by studying the family of slice
categories of a category with pullbacks 𝒞, for which, intuitively, the corresponding
fibration is going to be the codomain functor cod ∶ 𝒞ժ → 𝐼 .

Morphisms in 𝒞ժ are commutative squares in 𝒞. Can we express the property of
being a pullback square solely in terms of the functor cod? Consider the following
general definition:

1We will make this notion precise when defining names and substitution in section 1.4

12

Definition 1.3.1. Let 𝑝 ∶ ℰ → 𝒞 be a functor, and 𝛽 ∶ 𝑦 → 𝑦 a morphism in ℰ.
We say that 𝛽 is cartesian if for every morphism 𝛽 ∶ 𝑦 → 𝑦 in ℰ, and every
morphism 𝛼 ∶ 𝑝 𝑦 → 𝑝 𝑦 in 𝒞 such that 𝑝 𝛽 = 𝛼 ∘ 𝛼, there exists a unique
𝛽 ∶ 𝑦 → 𝑦 in ℰ such that 𝑝 𝛽 = 𝛼.

It is not hard to see that a commutative square in 𝒞 is a pullback if and only if the
corresponding morphism in 𝒞ժ is cartesian.

Now, existence of pullbacks (which, intuitively, should correspond to cod being a
fibration), can be expressed easily in terms of cod and the previous definition.

In general, we can say:

Definition 1.3.2. A (Grothendieck) fibration is a functor 𝑝 ∶ ℰ → 𝒞, with the
property that, for every 𝑦 ∶ ℰ, and every morphism 𝛼 ∶ 𝑥 → 𝑥 in 𝒞, with 𝑝 𝑦 = 𝑥,
there is a cartesian morphism 𝛽 ∶ 𝑦 → 𝑦 such that 𝑝 𝛽 = 𝛼.

In definition 1.3.2, any 𝛽 such that 𝑝 𝛽 = 𝛼 is called a cartesian lifting for 𝛼.

Definition 1.3.3. Let 𝑝 ∶ ℰ → 𝒞 and 𝑝 ∶ ℰ → 𝒞 be fibrations. A functor 𝐹 ∶ ℰ →
ℰ is called cartesian if the following diagram

ℰ է //

��>

>>
>>

>>
> ℰ

��~~
~~
~~
~~

𝒞

commutes, and 𝐹 maps cartesian morphisms to cartesian morphisms.

Fibrations ℰ → 𝒞 over a fixed small category 𝒞, with ℰ small, form a subbicategory
of the slice category 𝖢𝖺𝗍/𝒞, where 1-cells are cartesian morphisms. We denote this
bicategory by 𝖥𝗂𝖻ฑ.

Proposition 1.3.4. The codomain functor cod ∶ 𝒞ժ → 𝒞 is a fibration if and only if 𝒞 has
pullbacks.

Proof. Direct consequence of the definitions.

A choice of cartesian liftings for a fibration is called a cleavage. A fibration equipped
with a cleavage is called a cloven fibration. For example, a cleavage for the codomain
fibration is a choice of pullbacks.

In the following, we will assume that all fibrations are cloven.

13

Given a fibration 𝑝 ∶ ℰ → 𝒞, an object 𝑦 ∶ ℰ, and a morphism 𝛼 ∶ 𝑥 → 𝑥, with
𝑝𝑦 = 𝑥, we will denote the selected cartesian lifting of 𝛼 (from 𝑦) with ̄𝛼 𝑦 ∶ 𝛼∗𝑦 →
𝑦.

Definition 1.3.5. Let 𝑝 ∶ ℰ → 𝒞 be any functor, and 𝑥 ∶ 𝒞. The fibre of ℰ over 𝑥
(along 𝑝) is the subcategory of ℰ consisting of all those objects that are mapped to
𝑥, and all those morphisms that are mapped to the identity of 𝑥.

When the functor 𝑝 is clear, we will denote the fibre of ℰ over 𝑥 with ℰ֓. Mor-
phisms in ℰ which reside in a fibre are sometimes called vertical.

Proposition 1.3.6. Let 𝑝 ∶ ℰ → 𝒞 be a fibration, and 𝛼 ∶ 𝑥 → 𝑥 a morphism in 𝒞. Let
𝑗֓ be the inclusion ℰ֓ → ℰ (and similarly 𝑗֓).

The function determined by 𝛼∗ can be uniquely extended to a functor 𝛼∗ ∶ ℰ֓ → ℰ֓ in
such a way that ̄𝛼 determines a natural transformation ̄𝛼 ∶ 𝑗֓ ∘ 𝛼∗ → 𝑗֓

We will refer to the functor 𝛼∗ as the substitution (or reindexing) functor determined
by 𝛼.

Definition 1.3.7. We say that a functor 𝑝 ∶ ℰ → 𝒞 is small if for all 𝑥 ∶ 𝒞, the fibre
ℰ֓ is a small category.

Now we are ready to make (1.4) explicit. Given a small fibration 𝑝 ∶ ℰ → 𝒞, define
a mapping d𝑝 ∶ 𝒞πό → 𝖢𝖺𝗍 by:

𝐻 𝑥 = ℰ֓
𝐻 𝛼 = 𝛼∗ (1.5)

Proposition 1.3.8. The mapping d𝑝 defined by (1.5) is a pseudofunctor.

Following section 1.2, we are interested in strictly functorial substitutions. In the
language of fibrations, this translates to the following definitions:

Definition 1.3.9. A small fibration 𝑝 ∶ ℰ → 𝒞 is called split if the pseudofunctor
d𝑝 is strict.

It is sometimes useful to consider even stronger conditions on fibrations.

Definition 1.3.10. A small fibration 𝑝 ∶ ℰ → 𝒞 is called discrete if d𝑝 factors through
the functor 𝛿 ∶ 𝖲𝖾𝗍 → 𝖢𝖺𝗍 which maps every set 𝑋 to the discrete category on 𝑋.

14

The bicategory of profunctors

We know that every small fibration determines a pseudofunctor 𝒞πό → 𝖢𝖺𝗍, but
what about small functors that are not fibrations?

Since we can take fibres of arbitrary functors, we can still define an object-level
function 𝒞 → 𝖢𝖺𝗍, but it is not at all clear how to extend it to morphisms.

The idea that makes it possible to complete this construction is to enlarge 𝖢𝖺𝗍 by
weakening the notion of functor:

Definition 1.3.11. Let 𝒜 and ℬ be categories. A profunctor 𝐹 ∶ 𝒜 ↛ ℬ is simply
a functor ℬπό × 𝒜 → 𝖲𝖾𝗍.

Intuitively, profunctors are to functors as relations are to functions.

In fact, in the same way as every function determines a relation, every functor
determines a profunctor: given 𝐹 ∶ 𝒜 → ℬ, we define the profunctor 𝐹 ♯ ∶ 𝒜 ↛ ℬ
(called representable) by

𝐹 ♯(𝑏, 𝑎) = ℬ(𝑏, 𝐹 𝑎). (1.6)

In particular, the identity functor corresponds to the profunctor given by homsets.

Profunctors can be composed. Given 𝐹 ∶ 𝒜 ↛ ℬ, 𝐺 ∶ ℬ ↛ 𝒞, their composition
is defined by the coend:

𝐺 ∘ 𝐹 = ௲
ս∶ฐ

𝐺(−, 𝑏) × 𝐹(𝑏, −) (1.7)

Note that if ℬ is small, the coend (1.7) always exists.

Definition 1.3.12. The bicategory 𝖯𝗋𝗈𝖿 of profunctors is defined as follows. The
0-cells of 𝖯𝗋𝗈𝖿 are small categories, the 1-cells are profunctors, and the 2-cells are
natural transformations.

Natural transformations of profunctors are defined by regarding a profunctor
ℬ → 𝒜 directly as a functor ℬπό × 𝒜 → 𝖲𝖾𝗍. Composition and identity of 2-cells
are as usual.

Composition and identity of 1-cells are defined as above. Associativity and iden-
tity isomorphisms can be obtained via coend calculus.

There is an obvious faithful pseudofunctor 𝖢𝖺𝗍 → 𝖯𝗋𝗈𝖿 , which is the identity on
objects, and maps every functor to the corresponding pseudofunctor as in (1.6).
We will therefore consider 𝖢𝖺𝗍 as a subbicategory of 𝖯𝗋𝗈𝖿 .

15

Now, given a small functor 𝑝 ∶ ℰ → 𝒞, and a morphism 𝛼 ∶ 𝑥 → 𝑥 in 𝒞, we can
define a profunctor 𝛼♯ ∶ ℰ֓ ↛ ℰ֓ as follows:

𝛼♯(𝑦, 𝑦) = {𝑓 ∶ 𝑦 → 𝑦 | 𝑝 𝑓 = 𝛼}

We can then generalise proposition 1.3.8 as follows:

Proposition 1.3.13. Any small functor 𝑝 ∶ ℰ → 𝒞 determines a normal lax functor
d𝑝 ∶ 𝒞 → 𝖯𝗋𝗈𝖿 given by:

𝐻 𝑥 = ℰ֓
𝐻 𝛼 = 𝛼♯ (1.8)

Proposition 1.3.14. A small functor 𝑝 ∶ ℰ → 𝒞 is a fibration if and only if d𝑝 is a
𝖢𝖺𝗍-valued pseudofunctor.

Proof. If 𝑝 is a fibration, then the general definition of d𝑝 for functors (proposi-
tion 1.3.13) coincides with the one for fibrations (proposition 1.3.8), thus d𝑝 is 𝖢𝖺𝗍-
valued and pseudo.

Conversely, suppose d𝑝 factors through 𝖢𝖺𝗍. This means that 𝛼♯ is a representable
profunctor for all morphisms 𝛼 ∶ 𝑥 → 𝑥 in 𝒞. Hence there exists a functor
𝛼∗ ∶ ℰ֓ → ℰ֓ , and a natural isomorphism:

{𝛽 ∶ ℰ(𝑦, 𝑦) | 𝑝 𝛽 = 𝛼} ≅ ℰ֓(𝑦, 𝛼∗𝑦) (1.9)

for all 𝑦 ∶ ℰ֓ and 𝑦 ∶ ℰ֓ .

In particular, choosing 𝑦 = 𝛼∗𝑦, we get a morphism ̄𝛼 𝑦 ∶ ℰ(𝛼∗𝑦, 𝑦) correspond-
ing to the identity through the isomorphism (1.9).

It remains to show that ̄𝛼𝑦 is cartesian. Suppose then that 𝛼 ∶ 𝑥 → 𝑥 is a
morphism in 𝒞, and let 𝛽 ∶ 𝑦 → 𝑦 be a lifting of 𝛼 ∘ 𝛼. The fact that d𝑝 is a
pseudofunctor implies that the canonical map

(𝛼)♯(𝑦, 𝛼∗𝑦) ≅ (𝛼 ∘ 𝛼)♯(𝑦, 𝑦) → (𝛼 ∘ 𝛼)♯(𝑦, 𝑦),
is an isomorphism. This map is clearly given by composition with ̄𝛼 𝑦, and the
property that it is an isomorphism just expresses the fact that ̄𝛼 𝑦 is cartesian.

The Grothendieck construction

In section 1.3 we showed how to construct a normal lax functor 𝒞 → 𝖯𝗋𝗈𝖿 given
any small functor ℰ → 𝒞. In this section, we are going to detail the opposite
construction.

16

Let’s suppose that 𝐻 ∶ 𝒞 → 𝖯𝗋𝗈𝖿 is a normal lax functor. Define ℰ as the class of
all pairs (𝑥, 𝑦), where 𝑥 ∶ 𝒞, and 𝑦 ∶ 𝐻 𝑥.

We can build a category structure on ℰ by defining ℰ((𝑥, 𝑦), (𝑥, 𝑦)) to be the set
of all pairs (𝛼, 𝛽), where 𝛼 ∶ 𝑥 → 𝑥 is a morphism in 𝒞, and 𝛽 ∶ 𝐻 𝛼(𝑦, 𝑦).
Since 𝐻 id = id, we define the identity morphism in ℰ((𝑥, 𝑦), (𝑥, 𝑦)) to be just
the identity morphism in 𝐻 id(𝑦, 𝑦) = 𝐻 𝑥(𝑦, 𝑦).
The composition of morphisms (𝛼, 𝛽) and (𝛼, 𝛽) is given by (𝛼∘𝛼, 𝐻(𝛼, 𝛼)[𝛽, 𝛽],
where 𝐻(𝛼, 𝛼) ∶ 𝐻 𝛼 ∘𝐻 𝛼 → 𝐻(𝛼∘𝛼), and [𝛽, 𝛽] is the element in the coend
𝐻 𝛼 ∘ 𝐻 𝛼 determined by the pair (𝛽, 𝛽).
Furthermore, there is an obvious small functor ℰ → 𝒞. We will denote the cate-
gory ℰ by ∫ 𝐻 .

These two constructions are inverses of one another. To make this statement pre-
cise, we first need a definition.

Definition 1.3.15. Let 𝒜 be a bicategory, and 𝐹 𝐺 ∶ 𝒜 → 𝖯𝗋𝗈𝖿 be lax functors. A
lax natural transformation 𝛼 ∶ 𝐹 → 𝐺 is said to be representable if for all 𝑎 ∶ 𝒜,
its component 𝛼ռ ∶ 𝐹 𝑎 → 𝐺 𝑎 is a representable profunctor.

Now we can prove:

Proposition 1.3.16 (Bénabou). The mappings 𝑝 ↦ d𝑝 and 𝐻 ↦ ∫ 𝐻 define a biequiv-
alence between the slice 2-category 𝖢𝖺𝗍/𝒞, and the bicategory of normal lax functors, repre-
sentable lax natural transformations, and modifications.

To conclude the section, we state a classical result, which will be used in section 5.2
to define a fibration over the category of groupoids.

Theorem 1.3.17 (Giraud [5], Conduché [3]). Let 𝑝 ∶ ℰ → 𝒞 be a functor between small
categories. The following are equivalent:

(i) 𝑝 is exponentiable in 𝖢𝖺𝗍
(ii) d𝑝 is a pseudofunctor

1.4 Comprehension categories

The machinery of fibrations allows us to define a very general notion of model of
type theory. In the following, 𝒞 will denote any category, which we think of as the
category of contexts.

17

Definition 1.4.1. A comprehension category is a functor 𝖾𝗑𝗍 ∶ ℰ → 𝒞ժ (where 𝐶ժ

denotes the arrow category of 𝒞), such that:

(i) the composition dom ∘ 𝖾𝗑𝗍 is a small fibration

(ii) 𝖾𝗑𝗍 maps cartesian morphisms to pullback squares

The functor 𝖾𝗑𝗍 is called context extension functor.

A comprehension category is called split if the fibration dom ∘ 𝖾𝗑𝗍 is split, and it
is called full if the functor 𝖾𝗑𝗍 is fully faithful.

Given a comprehension category over 𝒞, we can adopt the terminology and nota-
tion of section 1.1, and talk about types, display maps, terms, and substitutions.

In particular, if 𝜎 is a type over Γ, and 𝑓 ∶ Δ → Γ a morphism in 𝒞, we have the
pullback square (1.2).

Clearly, any category with pullbacks admits a canonical comprehension category
structure, by taking 𝖾𝗑𝗍 to be the identity.

Notational conventions

Every morphism 𝑔 ∶ Δ → Γ.𝜎 is uniquely determined by a morphism 𝑓 ∶ Δ → Γ
and a term 𝑀 ∶ 𝑓∗𝜎 in the context Δ. In this case, we write 𝑔 = 〈𝑓, 𝑀〉, and we
say that 𝑔 is obtained by extending 𝑓 with the term 𝑀 .

Extension of morphisms can be iterated. Given a context Γ of the form Γ.𝜎φ … 𝜎ֆ,
we can uniquely define a morphism Δ → Γ by giving a morphism 𝑓 ∶ Δ → Γ,
and a sequence 𝑀φ, … , 𝑀ֆ of terms in the context Δ of the appropriate types. We
simply write 〈𝑓, 𝑀φ, … , 𝑀։〉 to denote the result of the iterated extension.

Definition 1.4.2. Given a type 𝜎 over the context Γ, the variable of type 𝜎 is the
unique term 𝑣ᇋ of type 𝑝∗

ᇋ𝜎 such that 𝑝∗ᆡᇋ ∘ 𝑣ᇋ = id.

Definition 1.4.3. A weakening morphism is inductively defined as follows:

• a display map is a weakening morphism

• if 𝑓 is a weakening morphism and 𝜎 is a type, 𝑞(𝑓, 𝜎) is a weakening mor-
phism.

Substituting along weakening morphisms is called weakening.

18

Provided the context is explicit, we will omit substitutions along weakening mor-
phisms when writing down types and terms, as it can usually be inferred. For
example, we can say that 𝑣ᇋ is a term of type 𝜎 in the context Γ.𝜎, leaving the
substitution 𝑝∗

ᇋ implicit, but making the context clear.

As an additional notational convenience, it is often useful to give names to vari-
ables. We will do so by defining contexts using a notations like in the following
example:

⟦Γ(𝑥 ∶ 𝜎)(𝑦 ∶ 𝜏)⟧ (1.10)

This defines the same context as simply Γ.𝜎.𝜏 , but fixes the names 𝑥 and 𝑦 to refer
to the corresponding variables (and weakenings thereof).

When defining a morphism by iterated extension into a context with named vari-
ables, we will adopt the notation exemplified by (1.1). For example, if 𝜎 and 𝜏 are
types over Θ, Γ = ⟦Θ(𝑥 ∶ 𝜎)(𝑦 ∶ 𝜏)⟧, and Δ = ⟦Θ(𝑢 ∶ 𝜏)(𝑣 ∶ 𝜎)(𝑧 ∶ 𝜏)⟧, the
following mapping:

⎧
⎨⎩

𝑢 ↦ 𝑦
𝑣 ↦ 𝑥
𝑧 ↦ 𝑦

defines a morphism Γ → Δ.

Finally, when working with split comprehension categories, it is often useful to
make the dependency of types and terms on variables explicit. To do so, we can
choose to denote a type ̄𝜌 in a context with named variables 𝑥φ, … , 𝑥ֆ as a function
𝜌 of 𝑘 arguments.

The function 𝜌 is defined as follows: given terms of the appropriate types
𝑀φ, … , 𝑀ֆ, 𝜌(𝑀φ, … , 𝑀։) is the type 〈 id, 𝑀φ, … , 𝑀ֆ〉∗ ̄𝜌. In particular, ̄𝜌 itself
can be expressed as 𝜌(𝑥φ, … , 𝑥ֆ). The same applies to terms.

1.5 Strictification

Split comprehension categories are more desirable than their non-split counter-
parts, but are that much harder to find in practice.

Categories commonly considered in mathematics, like algebraic categories, or
subcategories of 𝖢𝖺𝗍, do not usually have strictly functorial pullbacks, thus their
canonical comprehension category structure is not split.

19

However, we will show that it is always possible to modify any fibration in such a
way that it becomes split, and, as a consequence, any comprehension category can
be made split by slightly “refining” its notion of type.

Lemma 1.5.1. Let 𝑝 ∶ ℰ → 𝒞 be a fibration between small categories, and Γ ∶ 𝒞. There is
an equivalence of categories:

ℰဴ ≅ 𝖥𝗂𝖻ฑ(domဴ, 𝑝) (1.11)

where domဴ ∶ 𝒞/Γ → 𝒞 is the domain fibration.

Proof. Given 𝐸 ∶ ℰဴ, the assignment 𝑓 ↦ 𝑓∗𝐸 can be extended to a functor 𝐹 𝐸 ∶
𝒞/Γ → ℰ, thanks to the universal property of cartesian liftings. By construction,
we have a commutative triangle:

𝒞/Γ է զ //

!!C
CC

CC
CC

C
ℰ

����
��
��
��

𝒞.

Given ℎ ∶ 𝐸 → 𝐸 in ℰဴ, and 𝑓 ∶ 𝒞/Γ, we have a commutative diagram:

𝑓∗𝐸 //

��

𝐸

��
𝑓∗𝐸 // 𝐸

where the left arrow is again given by the universal property of cartesian liftings.
This determines a natural transformation 𝐹 ℎ ∶ 𝐹 𝐸 → 𝐹 𝐸. By the uniqueness
part of the universality, 𝐹 is a functor ℰဴ → 𝖢𝖺𝗍/𝒞(domဴ, 𝑝).
To show that 𝐹 is full, fix 𝐸 𝐸 ∶ ℰဴ, and let 𝜂 ∶ 𝐹 𝐸 → 𝐹 𝐸 be any natural
transformation. The component of 𝜂 at the identity of Γ is a morphism id∗𝐸 →
id∗𝐸. Since id∗𝑋 is canonically isomorphic to 𝑋 for any 𝑋 ∶ ℰ, we obtain a
morphism ℎ ∶ 𝐸 → 𝐸, and it’s easy to verify that 𝐹 ℎ is indeed 𝜂.

To show that 𝐹 is faithful, consider morphisms ℎ 𝑘 ∶ 𝐸 → 𝐸, and assume that
𝐹 ℎ = 𝐹 𝑘. Then in particular their components on the identity of Γ are equal,
and it immediately follows that ℎ = 𝑘.

Finally, we need to show that 𝐹 is essentially surjective. Let 𝐺 ∶ 𝒞/Γ → ℰ be
any functor over 𝒞, and set 𝐸 = 𝐺 idဴ. We will exhibit a natural isomorphism 𝜂

20

between 𝐺 and 𝐹 𝐸. For 𝑓 ∶ 𝒞/Γ, we have a commutative triangle:

Δ ց //

ց ��?
??

??
??

? Γ

=
����
��
��
��

Γ

So we get a cartesian morphism 𝐺𝑓 → 𝐸 over 𝑓 . We can now define 𝜂ց ∶ 𝐺𝑓 →
𝑓∗𝐸 using the universal property of the cartesian lifting 𝑓∗𝐸 → 𝐸. The naturality
of 𝜂, and the fact that it is an isomorphism, follow easily.

Now we are ready to prove:

Proposition 1.5.2. Let 𝑝 ∶ ℰ → 𝒞 be fibration between small categories. Then there is a
split fibration which is equivalent to ℰ over 𝒞.

Proof. The assignment Γ ↦ 𝖥𝗂𝖻ฑ(domဴ, 𝑝) defines a strict 2-functor 𝐻 ∶ 𝒞 → 𝖢𝖺𝗍.
The equivalence of lemma 1.5.1 then gives a cartesian equivalence of fibrations
between the fibration ∫ 𝐻 and 𝑝.

Applying proposition 1.5.2 to comprehension categories we get:

Corollary 1.5.3. Let 𝒞 be a comprehension category. Then there is an equivalent split com-
prehension category structure on 𝒞.

We call the split comprehension category obtained in this way the strictification of
𝒞.

By unfolding the construction, the strictification of 𝒞 is essentially obtained by
defining types over 𝒞 to be a pair of an original type, together with a “coherent”
way to substitute this type along any morphism.

1.6 Other structures

In the existing literature about models of type theory, a number of different cate-
gorical structures have been considered. Fortunately, they can all be regarded as
special cases of comprehension categories.

Definition 1.6.1. A category with attributes is a full split comprehension category.

21

Since the functor 𝖾𝗑𝗍 ∶ ℰ → 𝒞ժ in a category with attributes is fully faithful, we
can recover the category structure on ℰ by just knowing the set of objects over any
context.

In other words, a category with attributes can be simply described by givin a func-
tor Ty ∶ 𝒞 → 𝖲𝖾𝗍, and a functor 𝖾𝗑𝗍 ∶ ∫ 𝒞 → 𝒞ժ , which is the way it is usually
defined.

Definition 1.6.2. A display map category is a comprehension category where the
functor 𝖾𝗑𝗍 is the inclusion of a full subcategory of 𝒞ժ .

For example, any category with pullbacks defines (trivially) a display map cate-
gory, by taking 𝖾𝗑𝗍 to be the identity. The reason why we might want to restrict
the class of display maps is that, in some cases, not all morphisms might be expo-
nentiable, which means that the canonical comprehension category structure does
not have dependent products (see chapter 2).

Definition 1.6.3. A contextual category is a category with attributes, together with
a distinguished terminal object •, and a function ℓ ∶ 𝗈𝖻𝗃 𝒞 → ℕ (read “length”),
such that:

(i) • is the unique object of length 0 (on the nose)

(ii) for any type 𝜎 in the context Γ, ℓ (Γ.𝜎) = ℓ Γ + 1

(iii) for any non-empty context Γ, there exists a unique context Δ (called the father
of Γ), and a type 𝜎 over Δ such that Γ = Δ.𝜎.

The notion of contextual category is the exact semantic counterpart of the syntax
of type theory as usually defined (see for example [12]).

The basic idea is that a contextual category is a category with attributes where
every context is built uniquely with a finite number of context extensions starting
from the empty context.

1.7 Contextualisation

Contextual categories are easier to work with than general (split) comprehension
categories, because the existence of the length function allows us to use inductive
arguments to prove properties of contexts and morphisms.

22

Fortunately, most of those arguments work more generally, as long as we carefully
restrict them to morphisms that can be built by iterated extensions.

To make this idea precise, we will introduce the notion of contextualisation for a
general split comprehension category 𝒞.

Definition 1.7.1. A projection in 𝒞 is a finite sequence of composable display
maps.

Contexts and projections form a category which we denote by 𝒞Ј. There is an
obvious identity-on-objects functor 𝑖Ј ∶ 𝒞Ј → 𝒞, which maps every projection to
the composition of its elements. The length of a projection is defined in the obvious
way.

Note that for any context Θ, 𝑖Ј can be lifted to the corresponding slice categories,
to give a functor 𝑖ျ

Ј ∶ 𝒞Ј/Θ → 𝒞/Θ.

Definition 1.7.2. Let Θ be a context of 𝒞. The contextualisation of 𝒞 relative to Θ
is defined to be the comma category (𝑖ျ

Ј ↓ idျ), and is denoted by 𝒞(ျ).

Explicitly, objects of 𝒞(ျ) are the same as the objects of 𝒞Ј/Θ, i.e. projections to
Θ. Morphisms in 𝒞(ျ) between two such projections 𝑝 ∶ Γ → Θ and 𝑝 ∶ Δ → Θ
are morphisms 𝑓 ∶ Γ → Δ in 𝒞, such that the following diagram

Γ ց //

 ��?
??

??
??

? Δ

��~~
~~
~~
~~

Θ
is commutative.

There is an obvious fully faithful functor 𝑖ျ ∶ 𝒞(ျ) → 𝒞. Furthermore, we have a
function ℓ ∶ 𝒞(ျ) → ℕ which maps every projection to its length.

Proposition 1.7.3. For any context Θ, the contextualisation 𝒞(ျ) is a contextual category.

Proof. If 𝑝 = cod ∘ 𝖾𝗑𝗍 ∶ ℰ → 𝒞 is the fibration which is part of the comprehension
category structure on 𝒞, we define ℰ(ျ) via the pullback:

ℰ(ျ) օအ
//

အ
��

_�
ℰ

��

𝖾𝗑𝗍 // 𝒞ժ

����
��
��
��

𝒞(ျ) քအ
// 𝒞

23

We take idျ as the terminal object. There is clearly a unique cartesian functor 𝖾𝗑𝗍ျ

such that the following diagram commutes:

ℰ(ျ) 𝖾𝗑𝗍အ
//

օအ

��

ॐ𝒞(ျ)॑ժ

ॐքအ॑Դ

��
ℰ 𝖾𝗑𝗍 // 𝒞ժ

and that defines a split comprehension category structure on 𝒞(ျ).

The identity projection on Θ is clearly a terminal object in 𝒞(ျ). All the other
axioms of contextual categories are now easy to verify directly.

Definition 1.7.4. A morphism 𝑓 ∶ Δ → Γ is said to be small if is in the image of
𝑖ျ for some context Θ.

24

Chapter 2

Dependent sums and products

The simplified definitions of sums and products given in section 1.1 can now be
generalised to comprehension categories. In the following, 𝒞 will denote a com-
prehension category, with context extension functor 𝖾𝗑𝗍 ∶ ℰ → 𝒞ժ .

Definition 2.0.5. We say that 𝒞 has weak pseudo dependent sums if, for every
type 𝜎 over Γ, the substitution functor 𝑝∗

ᇋ ∶ ℰဴ → ℰဴӳᇋ has a left adjoint Σᇋ, and
for all morphisms 𝑓 ∶ Δ → Γ in 𝒞, the Beck-Chevalley condition is satisfied, i.e. the
canonical natural transformation

Σց∗ᇋ 𝑞(𝑓, 𝜎)∗

်Ջ∗ᆡ (ցӴᇋ)∗ ᇀ
��

Σց∗ᇋ 𝑞(𝑓, 𝜎)∗ 𝑝∗
ᇋ Σᇋ

≅
��

Σց∗ᇋ 𝑝∗
ց∗ᇋ 𝑓∗ Σᇋ

ᆾ ց∗ ်ᆡ
��

𝑓∗Σᇋ

(2.1)

is an isomorphism.

Definition 2.0.6. We say that 𝒞 has pseudo dependent sums if it has weak depen-
dent sums, and for every type 𝜎, the functor Σᇋ is full and faithful.

Definition 2.0.7. We say that 𝒞 has pseudo dependent products if, for every type
𝜎 over Γ, the substitution functor 𝑝∗

ᇋ ∶ ℰဴ → ℰဴӳᇋ has a right adjoint Πᇋ, and

25

for all morphisms 𝑓 ∶ Δ → Γ in 𝒞, the Beck-Chevalley condition is satisfied, i.e. the
canonical natural transformation

𝑓∗ Πᇋ

ᇀ ց∗ းᆡ
��

Πց∗ᇋ 𝑝ց∗ᇋ 𝑓∗ Πᇋ

≅
��

Πց∗ᇋ 𝑞(𝑓, 𝜎)∗ 𝑝∗
ᇋ Πᇋ

းՋ∗ᆡ (ցӴᇋ)∗ ᆾ
��

Πց∗ᇋ 𝑞(𝑓, 𝜎)∗

(2.2)

is an isomorphism.

Display map categories admit simple characterisations of pseudo dependent sums
and products.

Proposition 2.0.8. A display map category has pseudo dependent sums if and only if display
maps are closed under composition.

Proposition 2.0.9. A display map category has pseudo dependent products if and only if
all display maps are exponentiable.

Corollary 2.0.10. A locally cartesian closed category, regarded as a comprehension category,
has pseudo dependent sums and products.

2.1 Strictification of sums and products

When working with a split comprehension category, the notion of pseudo depen-
dent sum and product is too weak.

Definition 2.1.1. Let 𝒞 be a split comprehension category. We say that 𝒞 has de-
pendent sums (resp. products) if it has pseudo dependent sums (resp. products)
and the isomorphism (2.1) (resp. (2.2)) is the identity.

Note that the definition of dependent sums implies that the following diagram of

26

functors:

ℰဴӳᇋ
(ց ᇋ)∗

//

်ᆡ
��

ℰဳӳց∗ᇋ

်Ջ∗ᆡ
��

ℰဴ ց∗
// ℰဳ

is strictly commutative, and similarly for products.

The following result relates pseudo dependent sums in a comprehension category
with dependent sums in its strictification.

Proposition 2.1.2. Let 𝒞 be a comprehension category with pseudo dependent sums. Then
the strictification of 𝒞 has dependent sums.

Of course, a similar result holds for products, with analogous proof:

Proposition 2.1.3. Let 𝒞 be a comprehension category with pseudo dependent products.
Then the strictification of 𝒞 has dependent products.

As an immediate consequence, in the case of locally cartesian closed categories,
we get:

Corollary 2.1.4 (Hofmann [6]). Let 𝒞 be a locally cartesian closed category, regarded as a
comprehension category. Then the strictification of 𝒞 has dependent sums and products.

27

Chapter 3

Intensional equality

This chapter will be devoted to studying internal notions of equality in a split com-
prehension category 𝒞.

The following definition of identity type is limited to split comprehension cate-
gories, and is based on the usual syntactic presentation of intensional equality.

Definition 3.0.5. An identity type structure on a split comprehension category 𝒞 is
given by:

• for any type 𝜎 in the context Γ, a type 𝖨𝖽ᇋ in the context Γ.𝜎.𝜎 (we denote
by 𝐼ᇋ the context Γ.𝜎.𝜎.𝖨𝖽ᇋ);

• a morphism 𝑟ᇋ ∶ Γ.𝜎 → 𝐼ᇋ, such that the following diagram commutes:

Γ.𝜎 ֍ᆡ //

֑ᆡ ##G
GG

GG
GG

GG
𝐼ᇋ

||yy
yy
yy
yy

Γ.𝜎.𝜎

(3.1)

• for any commutative square

Γ.𝜎 //

֍ᆡ
��

Δ.𝜏
ᆢ
��

𝐼ᇋ // Δ

(3.2)

a diagonal lifting 𝐼ᇋ → Δ.𝜏 that makes both triangles commute.

28

such that all data is stable under substitutions.

For any terms Γ ⊢ 𝑀 𝑁 ∶ 𝜎, we denote by 𝑀 ≡ 𝑁 the type over Γ obtained by
substituting 𝖨𝖽ᇋ along the morphism 〈 id, 𝑀, 𝑁〉 ∶ Γ → Γ.𝜎.𝜎. In particular, we
have

𝐼ᇋ = ⟦Γ(𝑥 𝑦 ∶ 𝜎)(𝑝 ∶ 𝑥 ≡ 𝑦)⟧

For any term 𝑀 ∶ 𝜎 over Γ, we denote 𝑟ᇋ ∘ 𝑀 by 𝗋𝖾𝖿𝗅ծ . Therefore, 𝗋𝖾𝖿𝗅ծ is a term
of type 𝑀 ≡ 𝑀 over Γ.

It would be useful to give a definition of identity types in the style of those in
chapter 2. There is a formulation of identity types as adjoints (namely, left adjoints
of the reindexing functor along variables), but this gives extensional identity types
(see section 3.3). It is not currently clear to the author how to properly weaken the
adjunction to get an equivalent formulation to definition 3.0.5.

In the presence of identity types, every type 𝜎 can be given a structure of weak
ω-groupoid (see [15]).

3.1 Trivial cofibrations

Given an identity type structure on a split comprehension category 𝒞, one can
define a weak factorisation system on the syntactic subcategory of 𝒞. This is a
slight generalisation of the result in [4].

In the following, 𝒞 will denote a split comprehension category with identity types.

Definition 3.1.1. A morphism 𝑓 is said to be a trivial cofibration if it has the left
lifting property with respect to all display maps.

The choice of terminology is motivated by the fact that, assuming the existence of
some extra structure on 𝒞, one could define a pre-model category structure where
the trivial cofibrations correspond to the class of morphisms that we just defined.
Here we will only deal with the “right” weak factorisation system, and refer to [11]
for more details.

Proposition 3.1.2. For any type 𝜎, 𝑟ᇋ ∶ Γ → 𝐼ᇋ is a trivial cofibration.

Proof. Immediate from the definition of identity type structure.

29

Proposition 3.1.3 (Paulin-Mohring rule). Let Γ be a context, 𝜎 a type over Γ, and 𝑀 a
term of type 𝜎. Denote by 𝐼ᇋӴծ the based path space:

⟦Γ(𝑥 ∶ 𝜎)(𝑝 ∶ 𝑥 ≡ 𝑀)⟧

The morphism Γ → 𝐼ᇋӴծ given by

𝑥 ↦ 𝑀
𝑝 ↦ 𝗋𝖾𝖿𝗅ծ

is a trivial cofibration.

Lemma 3.1.4. Every small morphism 𝑓 can be factored as 𝑝 ∘ 𝑖, where 𝑝 is a composition
of weakening morphisms, and 𝑖 is a trivial cofibration.

Proof. Since 𝑓 is small, we can assume that 𝒞 is a contextual category.

We proceed by induction on the length of the target of 𝑓 . If 𝑓 ∶ Γ → •, then 𝑓 is a
projection, so we take the identity as 𝑖 and 𝑓 itself as 𝑝.

Now, assuming that we have a factorisation 𝑓 = 𝑝 ∘ 𝑖 ∶ Γ → Δ, we will exhibit a
factorisation for 𝑞(𝑓, 𝜏), where 𝜏 is a type over Δ. Since 𝑞(𝑓, 𝜏) = 𝑞(𝑝, 𝜏) ∘ 𝑖, it is
enough to suppose that 𝑓 is itself a composition of weakening morphisms.

We have that 𝑞(𝑓, 𝜏) = 〈𝑓, 𝑀〉, for some term 𝑀 ∶ 𝑓∗𝜏 over Γ, so we can find a
factorisation

Γ ֍Ջ∗ᆢӱԸ // 𝐼ց∗ᇌӴծ
 // Δ.𝜏

where 𝑞 is obtained from

𝐼ց∗ᇌӴծ // Γ ց // Δ

by extending along the variable 𝑥 of 𝐼ց∗ᇌӴծ .

To conclude, observe that 𝑞 is obtained by extension from a composition of weak-
enings, while 𝑟ᇋӴծ is a trivial cofibration by proposition 3.1.3.

3.2 Weak equivalences

Definition 3.2.1. Let 𝑓 𝑔 ∶ Γ → Δ be two morphisms, and 𝑝 ∶ Δ → Θ a projection.
We define a 𝑝-homotopy between 𝑓 and 𝑔 by induction on the length of 𝑝:

30

• if Δ = Θ, a homotopy between 𝑓 and 𝑔 is just an equality 𝑓 = 𝑔
• if Δ = ΔЈ.𝜎, 𝑓 = 〈𝑓Ј, 𝑀〉 and 𝑔 = 〈𝑔Ј, 𝑁〉, and ℎ is a homotopy between 𝑓Ј

and 𝑔Ј, we use ℎ to get a morphism 𝑠փ ∶ 𝑓∗
Ј𝜎 → 𝑔∗

Ј𝜎, and define a homotopy
between 𝑓 and 𝑔 as a pair (ℎ, 𝑝), where 𝑝 ∶ 𝑀 ≡ 𝑠∗

փ𝑁 .

Definition 3.2.2. Two morphisms are said to be homotopic if there exists a 𝑝-
homotopy between them for some projection 𝑝.

Definition 3.2.3. A morphism 𝑓 ∶ Δ → Γ is a weak equivalence if there exists
𝑔 ∶ Γ → Δ such that 𝑔 ∘ 𝑓 and 𝑓 ∘ 𝑔 are both homotopic to identities.

Proposition 3.2.4. A small trivial cofibration is a weak equivalence.

3.3 Extensional equality

Definition 3.3.1. An identity type structure on 𝒞 is said to be extensional if for any
context Γ and any type 𝜎 in Γ,

𝑟ᇋ ∶ Γ.𝜎 → 𝐼ᇋ

is an isomorphism.

Proposition 3.3.2. Let 𝒞 be a split comprehension category with an identity type structure.
The following are equivalent.

(i) the identity type structure is extensional

(ii) the lifting problem 3.2 for any display map has a unique solution

(iii) in every context Γ, Γ ⊢ 𝑃 ∶ 𝑀 ≡ 𝑁 implies Γ ⊢ 𝑀 = 𝑁
(iv) all weak equivalences are isomorphisms

(v) every small morphism is a fibration

Proof. (i)⇒(ii) Obvious.

(ii)⇒(iii) The two variables 𝑥 and 𝑦 in 𝐼ᇋ are both valid diagonal liftings in the
following diagram:

Γ.𝜎 //

��

Γ.𝜎

��
𝐼ᇋ // Γ

31

thus they are equal. Composing with the morphism Γ → 𝐼ᇋ given by

⎧
⎨⎩

𝑥 ↦ 𝑀
𝑦 ↦ 𝑁
𝑝 ↦ 𝑃

we then get that 𝑀 = 𝑁 .

(iii)⇒(iv) If the existence of a term of type 𝑀 ≡ 𝑁 implies that 𝑀 = 𝑁 , the
existence of a homotopy between two morphisms 𝑓 and 𝑔 implies that 𝑓 = 𝑔.
Thus weak equivalences are the same as isomorphisms.

(iv)⇒(v) Let 𝑓 be a small morphism. Factor 𝑓 as a small trivial cofibration 𝑖 fol-
lowed by a fibration 𝑝. Since 𝑖 is a weak equivalence, it is an isomorphism,
so 𝑓 is isomorphic to 𝑝, hence a fibration itself.

(v)⇒(i) The morphism 𝑟ᇋ is clearly small, thus it is a fibration by assumption.
Since it is a trivial cofibration by proposition 3.1.2, it follows that it is an
isomorphism.

Lemma 3.3.3. Suppose 𝒞 has extensional identity types. Then for every term Γ ⊢ 𝑀 ∶ 𝜎,
𝗋𝖾𝖿𝗅ծ is the only term of type 𝑀 ≡ 𝑀 .

Proof. Let us work in the context 𝐼ᇋ = ⟦Γ(𝑥 𝑦 ∶ 𝜎)(𝑝 ∶ 𝑥 ≡ 𝑦)⟧. By 3.3.2, 𝑥 = 𝑦,
hence the type of 𝑝 is 𝑥 ≡ 𝑥, so 𝗋𝖾𝖿𝗅֓ has the same type as 𝑝. We can then consider
the type 𝑝 ≡ 𝗋𝖾𝖿𝗅֓ in the context 𝐼ᇋ.

We have the following commutative diagram:

Γ.𝜎 //

֍ᆡ
��

⟦𝐼ᇋ.(𝑞 ∶ 𝑝 ≡ 𝗋𝖾𝖿𝗅֓)⟧

��
𝐼ᇋ

Џͷ // 𝐼ᇋ

where the top arrow is given by: (𝑥 ↦ 𝑥; 𝑦 ↦ 𝑥; 𝑝 ↦ 𝗋𝖾𝖿𝗅֓; 𝑞 ↦ 𝗋𝖾𝖿𝗅𝗋𝖾𝖿𝗅՝).
The diagonal lifting gives a term 𝐼ᇋ ⊢ 𝑄 ∶ 𝑝 ≡ 𝗋𝖾𝖿𝗅֓, so by 3.3.2 again, we conclude
that 𝑝 = 𝗋𝖾𝖿𝗅֓.

Now, given any term Γ ⊢ 𝑃 ∶ 𝑀 ≡ 𝑀 , substituting along the morphism Γ → 𝐼ᇋ
given by (𝑥 ↦ 𝑀; 𝑦 ↦ 𝑀; 𝑝 ↦ 𝑃), we get that 𝑃 = 𝗋𝖾𝖿𝗅ծ , so 𝗋𝖾𝖿𝗅ծ is the only
term of its type.

32

For extensional identity types, we can prove a result like Corollary 2.1.4:

Proposition 3.3.4 (Hofmann [6]). A locally cartesian closed category regarded as a split
comprehension category has extensional identity types.

Proof (sketch). Types over Γ are cartesian functors domဴ → 𝑝, where 𝑝 is the
codomain fibration.

Given such a type 𝜎, we define 𝖨𝖽ᇋ as follows. Consider any 𝑔 ∶ Δ → Γ.𝜎.𝜎, and
write 𝑔 = 〈𝑓, 𝑀, 𝑁〉 for some 𝑓 ∶ Δ → Γ, and terms 𝑀 , 𝑁 of type 𝜎𝑓 over Δ.

The value of 𝖨𝖽ᇋ on 𝑓 is then defined to be the equalizer of 𝑀 and 𝑁 .

33

Chapter 4

Universes

In the following, we will be working in a split comprehension category 𝒞 with a
terminal object •.

Definition 4.0.5. A universe in 𝒞 is given by a type 𝒰 in the empty context, and a
type 𝖤𝗅 in the context •.𝒰.

We use 𝒰 to denote the context ·.𝒰 as well, and 𝒰 for 𝒰.𝖤𝗅.
If 𝒞 is a locally cartesian closed category, equipped with the strict comprehension
category structure given by proposition 1.5.2, a universe in 𝒞 is a morphism

𝒰 → 𝒰,

together with a choice of pullbacks for any morphism 𝑋 → 𝒰. This coincides with
the definition of universe given in [10].

The reason for considering universes is that they allow us to build a full model
of intensional type theory (as a split comprehension category) within them, and
most of the construction can be done in the internal type theory.

Given a universe, and a morphism 𝑓 ∶ Γ → 𝒰, we denote by 𝜎ց the substitution
of 𝖤𝗅 along 𝑓 .

Now we can define a category with attributes structure on 𝒞 (which we denote
𝒞ร, and call the restricted model determined by 𝒰) with a representable Ty functor
as follows:

Ty Γ = 𝒞(Γ, 𝑈)
𝖾𝗑𝗍 𝑓 = 𝖾𝗑𝗍 𝜎ց

34

4.1 Type formers in a restricted model

If a split comprehension category 𝒞 has dependent products, there is a very simple
internal criterion to determine whether a restricted model determined by a given
universe 𝒰 inherits the dependent product structure.

Similar considerations apply to other type formers, but we will focus on dependent
types in the following. Since we are working with split comprehension categories,
we can use type theoretic notation, as detailed in section 1.4.

To distinguish between the original model 𝒞 and the restricted model 𝒞ն , we will
write judgements in 𝒞 in blue, and judgements in 𝒞ն in green.

To avoid confusion between the meta-theoretic Π term introduced below, and the
internal notation for dependent products, we will use Agda-style syntax: a type
of the form Πᇋ𝜏 will be denoted as (𝑥 ∶ 𝜎) → 𝜏(𝑥). Finally, the empty context •
will usually be omitted from the notation.

Definition 4.1.1. We say that a universe 𝒰 has dependent products if there is a
term

Π ∶ (𝜎 ∶ 𝒰) → (𝐸𝑙 𝜎 → 𝒰) → 𝒰
such that, in the context ⟦(𝜎 ∶ 𝒰)(𝜏 ∶ 𝖤𝗅(𝜎) → 𝒰)⟧, we have:

𝖤𝗅 (Π 𝜎 𝜏) = (𝑥 ∶ 𝖤𝗅 𝜎) → 𝖤𝗅(𝜏 𝑥) (4.1)

Now we can show how dependent products for 𝒰 induce dependent products for
the restricted model 𝒞ն . For clarity, we will follow the conventional rule-based
approach (see [7] for details). It is not hard to show that this really gives dependent
products in the sense of definition 2.1.1.

Formation

Given judgements in 𝒞ร:

Γ ⊢ 𝜎 type
Γ(𝑥 ∶ 𝜎) ⊢ 𝜏(𝑥) type

These correspond to judgements in 𝒞:

Γ ⊢ 𝜎 ∶ 𝒰
Γ(𝑥 ∶ 𝐸𝑙𝜎) ⊢ 𝜏(𝑥) ∶ 𝒰

35

From the second of which we get

Γ ⊢ 𝜏 ∶ (𝑥 ∶ 𝖤𝗅 𝜎) → 𝒰

Now we can apply Π:

Γ ⊢ Π 𝜎 𝜏 ∶ 𝒰

And we obtain, by substituing into equation (4.1):

𝖤𝗅 (Π 𝜎 𝜏) = (𝑥 ∶ 𝖤𝗅 𝜎) → 𝖤𝗅 (𝜏 𝑥)

So, we take Π 𝜎 𝜏 as the product of 𝜎 and 𝜏 .

Introduction

Let 𝜎 and 𝜏 as before, and fix a term

Γ(𝑥 ∶ 𝜎) ⊢ 𝑀 ∶ 𝜏 𝑥

in 𝒞ร. This corresponds to a term in 𝒞:

Γ(𝑥 ∶ 𝖤𝗅 𝜎) ⊢ 𝑀 ∶ 𝖤𝗅(𝜏 𝑥)

abstracting, we get
Γ ⊢ 𝜆 𝑀 ∶ (𝑥 ∶ 𝖤𝗅 𝜎) → 𝖤𝗅 (𝜏 𝑥)

which, reinterpreted in 𝒞ร gives:

Γ ⊢ 𝜆 𝑀 ∶ Π 𝜎 𝜏

So, abstraction for 𝒞ร strictly coincides with abstraction in 𝒞. Stability under sub-
stitution follows easily.

Elimination

A similar argument works for elimination. Suppose we have (in 𝒞ร):

Γ ⊢ 𝑀 ∶ Π 𝜎 𝜏
Γ ⊢ 𝑁 ∶ 𝜎

36

We get, in 𝒞:

Γ ⊢ 𝑀 ∶ (𝑥 ∶ 𝖤𝗅 𝜎) → 𝖤𝗅 (𝜏 𝑥)
Γ ⊢ 𝑁 ∶ 𝖤𝗅 𝜎

therefore, by application:
Γ ⊢ 𝑀 𝑁 ∶ 𝖤𝗅 (𝜏 𝑁)

We know, by β applied to 𝜏 , that

𝜏 𝑁 = 𝜏(𝑁)

so
Γ ⊢ 𝑀 𝑁 ∶ 𝖤𝗅 (𝜏(𝑁))

which gives, back in 𝒞ร:
Γ ⊢ 𝑀 𝑁 ∶ 𝜏(𝑁)

Again, the fact that elimination is stable under substitution follows from the cor-
responding fact for 𝒞.

The 𝛽 and 𝜂 rules follow immediately from the corresponding rules for 𝒞.

37

Chapter 5

Examples

5.1 Set model

The category of sets is locally cartesian closed by proposition 1.2.3. Therefore, the
corresponding split comprehension category has dependent sums and products
(Corollary 2.1.4) and extensional identity types (proposition 3.3.4).

Assuming a set-theoretic foundation, every regular cardinal 𝜅 determines a uni-
verse 𝒰ᇃ in 𝖲𝖾𝗍, regarded as a split comprehension category.

Namely, the cumulative hierarchy at level 𝜅 (see for example [9]) is a locally carte-
sian closed subcategory 𝑉ᇃ of 𝖲𝖾𝗍, hence dependent sums, products and identity
types are inherited by the restricted model 𝖲𝖾𝗍รᆙ .

5.2 Groupoid model

The first example of a model of intensional (i.e. non-extensional) identity types
was given in [8] using the category 𝖦𝗉𝖽 of groupoids.

The basic idea is to take fibrations of groupoids (that is, Grothendieck fibrations
of the underlying categories) as types.

Using theorem 1.3.17 one can show that a morphism of groupoids is exponentiable
if and only if it is a fibration, thus fibrations determine a display map category with
dependent products by proposition 2.0.9.

Dependent sums follow easily from proposition 2.0.8 and the fact that fibrations
are closed under composition.

38

The most interesting part of the construction is, of course, the definition of identity
types. For simplicity, we only carry it out for the empty context, referring to the
original paper [8] for full details.

Since every morphism to the one-point groupoid is automatically a fibration, types
over the empty context can be identified with groupoids themselves. Given a
groupoid 𝐴, we define the identity type for it to be the obvious map 𝑝𝖨𝖽Ԭ ∶ 𝐴ժ →
𝐴 × 𝐴, where 𝐴ժ is the arrow category of 𝐴.

Of course, 𝐴ժ is itself a groupoid, and it is not hard to see that 𝑝𝖨𝖽Ԭ is a fibration.
The morphism 𝑟բ ∶ 𝐴 → 𝐴ժ is defined by 𝑟բ(𝑎) = idռ, and it clearly makes the
diagram (3.1) commute.

To show that the lifting problem (3.2) has always a solution, it is enough to find a
diagonal lifting 𝑔 for the following diagram:

𝐴 ց //

��

𝐵

��

𝐴ժ = // 𝐴ժ ,

where 𝑝 is any fibration over 𝐴ժ .

Given an object 𝛼 ∶ 𝑥 → 𝑥 in 𝐴ժ , we consider the following commutative diagram
in 𝐴

𝑥 Џͷ //

Џͷ
��

𝑥
ᆺ
��𝑥 ᆺ // 𝑦

regarded as a morphism 𝑢 ∶ id → 𝛼 in 𝐴ժ , and apply the lifting property of the
fibration 𝑝 to 𝑢, to get an object 𝑔𝛼 of 𝐵 above 𝛼.

This gives a definition of 𝑔 for objects of 𝐴ժ . It is not hard to extend 𝑔 to morphisms
and prove all the required properties.

5.3 Presheaf models

Let 𝒟 be any small category, and define 𝒞 as the category of 𝖲𝖾𝗍-valued functors
(presheaves) on 𝒟.

Proposition 5.3.1. The category 𝒞 is locally cartesian closed.

39

Proof. It is well known that any presheaf category is cartesian closed. To show that
every slice is also cartesian closed, it suffices to observe that, for any presheaf 𝑋:

𝖲𝖾𝗍ฒ/𝑋 ≅ 𝖲𝖾𝗍∫ չ

Therefore, as in the case of 𝖲𝖾𝗍, we get a comprehension category structure on 𝒞
with dependent products, sums, and extensional identity types.

In the following, we define a universe for 𝒞. The basic idea is taken from [10], but
the details of the following construction are original, and do not require the axiom
of choice.

Let 𝒞 be category of functors 𝒟 → 𝖢𝖺𝗍, together with lax natural transformations.
The functor 𝛿 ∶ 𝖲𝖾𝗍 → 𝖢𝖺𝗍, which gives the discrete category over a set, induces a
functor 𝛿∗ ∶ 𝒞 → 𝒞 by precomposition.

Lemma 5.3.2. The functor 𝛿∗ has a right adjoint 𝜀.

Proof. The category 𝒞 is locally finitely presentable, and 𝒞 is locally small, hence
it is enough to show that 𝛿∗ preserves small colimits. So, let ऺ𝑋քऻք∶ժ be a small
diagram of presheaves, and 𝜈ք ∶ 𝑋ք → 𝐿 its colimit cocone. We want to show that
it is a universal cocone in 𝒞 as well.

To that end, suppose that 𝜂ք ∶ 𝑋ք → 𝑍 is another cocone, where each 𝜂ք is a lax
natural transformation. For every 𝑛 ∶ 𝒟, since colimits commute with functor
application, we get a function 𝜂։ ∶ 𝐿։ → 𝑍։, such that for all 𝑖 ∶ 𝐼 , 𝑥 ∶ 𝑋ք

։

𝜂։ 𝑥 = 𝜂ք
։(𝜈ք

։ 𝑥). (5.1)

All we have to do now is define 𝜂 on morphisms of 𝒟. So let 𝑑 ∶ 𝑛 → 𝑚 be such
a morphism, and let 𝑥 ∶ 𝑋ֈ. Choose an 𝑖 ∶ 𝐼 and ̃𝑥 ∶ 𝑋ք

ֈ such that 𝑥 = 𝜈ք ̃𝑥, and
define 𝜂տ 𝑥 = 𝜂ք

տ ̃𝑥, which has the correct type thanks to 5.1, and is well defined
because the 𝜂ք form a cocone.

It is easy to see that 𝜂 is a lax natural transformation, and that it is unique. Thus 𝐿
is the colimit of the 𝑋ք in 𝒞.

Now let 𝑉 be a small cartesian closed category of sets (for example, 𝑉ᇃ for some
regular cardinal 𝜅). We denote by 𝑊 the image under 𝜀 of the constant functor on

40

𝑉 . The adjunction between 𝛿∗ and 𝜀, gives, for any presheaf 𝑋, a natural isomor-
phism:

𝒞(𝑋, 𝑊) ≅ 𝒞(𝑋, Const 𝑉). (5.2)

The idea of this construction is that lax natural transformations between a presheaf
𝑋 and the constant functor 𝑉 classify presheaves over 𝑋 with fibers in 𝑉 , so 𝑊
is the classifying presheaf for such maps, which we will call 𝑉 -small.

In fact, let 𝜂 ∶ Γ → 𝑉 be lax natural transformation. For 𝑛 ∶ 𝒟, define

𝐸ᇀ
։ = (𝑥 ∶ Γ։) . 𝜂։ 𝑥,

and for 𝑑 ∶ 𝑛 → 𝑚,

𝑑∗ ∶ 𝐸ᇀ
ֈ → 𝐸ᇀ

։
𝑑∗(𝑥, 𝑦) = (𝑑∗𝑥, 𝜂տ 𝑥 𝑦).

Clearly, the first projection 𝐸ᇀ → Γ is a natural transformation, so 𝐸ᇀ can be
regarded as an element of 𝒞/Γ.

Vice versa, every 𝑉 -small 𝐸 → Γ is naturally isomorphic over Γ to 𝐸ᇀ for some
lax natural transformation 𝜂 ∶ Γ → 𝑉 .

Furthermore, for any 𝑓 ∶ Δ → Γ, we have an obvious pullback diagram:

𝐸ᇀ∘ց //

��

𝐸ᇀ

��
Δ // Γ

In 2-categorical language, 𝐸 defines a pseudonatural transformation between
𝒞(−, 𝑉) and the pseudofunctor 𝖲 ∶ Γ ↦ 𝒞/Γ whose essential image is the
pseudo-subfunctor of 𝖲 consisting of 𝑉 -small maps.

Now, let 𝑤 ∶ 𝑊 → 𝑉 be the counit of the adjunction 5.2. Then 𝐸֒ is a 𝑉 -small
map:

𝑝֒ ∶ 𝑊 → 𝑊,
which, together with the choice of pullbacks given by 𝐸 above, defines a universe
for 𝒞.

41

5.4 Models in strict ω-categories

This section is a sketch of a model construction based on strict ω-categories, cur-
rently a work in progress. The following uses the terminology of Homotopy Type
Theory, for which we refer the reader to [13].

In [10], the authors construct a contextual category using Kan fibrations of sim-
plicial sets, with dependent sums, products, intensional identity types, and a uni-
verse satisfying the univalence axiom.

Section 5.3 above can be regarded as a first step in the construction of the univalent
universe.

This was not the first example of such a model. In fact, the groupoid model in
[8] already has this property. What really sets the simplicial model apart from
previous constructions is that the univalent universe is not limited to 𝑛-truncated
types for some 𝑛, but contains types of arbitrarily large h-level, and even types
with no h-level at all.

Unfortunately, models based on simplicial sets have so far proved very hard to
internalise in type theory, and thus it is still not possible to extract a decidable
implementation from them.

A recent attempt [1] based on semi-simplicial sets seems promising, but a lot of
problems remain.

Given the evident combinatorial difficulties of weak ω-groupoids, one could ask
whether using strict ω-groupoids, it would be easier to find a solution. Indeed,
a model of type theory based on strict ω-groupoids has already been developed
[16].

Unfortunately, it is quite easy to convince oneself that such a model has no chance
of admitting a univalent universe constisting of more than sets (i.e. 0-truncated
types).

Intuitively, in fact, in a universe containing, say, 1-truncated types (groupoids),
the identity types would correspond to isomorphisms (since the universe itself
must be a strict ω-groupoid), but weak equivalences correspond to equivalences
of groupoids.

This is the same problem that the original groupoid model has. Introducing 𝜔-
groupoids allows one to consider higher types, but univalence still only holds up
to sets.

Therefore, our approach is to work with strict ω-categories with (chosen) weak

42

inverses. In an effort keep the combinatorial complexity tame, we also require the
weak inverse operator to be involutive. We call these structures pseudogroupoids.

To see why it is reasonable to expect this model to admit a univalent universe, we
take the set of all “small” pseudogroupoids (e.g. in some 𝑉ᇃ), and show how we
can equip it with a structure of pseudogroupoid in such a way that weak equiva-
lences correspond to morphisms.

Since pseudogroupoids are in particular weak ω-groupoids, we can regard them
as Kan complexes, and therefore work internally within the simplicial model.

Given small pseudogroupoids 𝐴 and 𝐵, we define a morphism in the universe
between 𝐴 and 𝐵 to be an infinite tower of functions in both directions like the
following:

𝑓Ј ∶ 𝐴 → 𝐵
𝑔Ј ∶ 𝐵 → 𝐴
𝑓φ ∶ (𝑥 ∶ 𝐴)(𝑦 ∶ 𝐵) → 𝑓Ј(𝑥) ≡ 𝑦 → 𝑥 ≡ 𝑔Ј(𝑦)
𝑔φ ∶ (𝑥 ∶ 𝐴)(𝑦 ∶ 𝐵) → 𝑥 ≡ 𝑔Ј(𝑦) → 𝑓Ј(𝑥) ≡ 𝑦
𝑓ϵ ∶ ∀ 𝑥 𝑦 (𝑥φ ∶ 𝑓Ј(𝑥) ≡ 𝑦)(𝑦φ ∶ 𝑥 ≡ 𝑔Ј(𝑦))

→ 𝑓φ(𝑥φ) ≡ 𝑦φ → 𝑥φ ≡ 𝑔φ(𝑦φ)
𝑔ϵ ∶ ∀ 𝑥 𝑦 (𝑥φ ∶ 𝑓Ј(𝑥) ≡ 𝑦)(𝑦φ ∶ 𝑥 ≡ 𝑔Ј(𝑦))

→ 𝑥φ ≡ 𝑔φ(𝑦φ) → 𝑓φ(𝑥φ) ≡ 𝑦φ
…

It is not hard to see that these towers give a strict ω-category structure on the uni-
verse. To show that it forms a pseudogroupoid, one has to define an involutive
symmetry, which seems reasonably easy to do, since this formulation of equiva-
lence is manifestly symmetric (as opposed to, say, the original one by Voevodsky
saying that all fibres are contractible).

A lot of work is needed to turn this idea into a fully rigorous construction. The
involutive inverses make many of the details easier to work out, but they are still
quite challenging.

Furthermore, the infinite representation for equivalences would present addi-
tional challenges, if one were to internalise the model in a pre-existing type
theory.

43

Bibliography

[1] B. Barras, T. Coquand, and S. Huber. A generalization of takeuti-gandy in-
tepretation. 2013.

[2] F. Borceux. Handbook of Categorical Algebra, volume 2. 1994.

[3] F. Conduché. Au sujet de l’existence d’adjoints à droite aux foncteurs “image
réciproque” dans la catégorie des catégories. 1972.

[4] N. Gambino and R. Garner. The identity type weak factorisation system. 2008.

[5] J. Giraud. Méthode de la descente. 1964.

[6] M. Hofmann. On the interpretation of type theory in locally cartesian closed
categories. In Proceedings of Computer Science Logic, Lecture Notes in Computer
Science, pages 427–441. Springer, 1994.

[7] M. Hofmann. Syntax and semantics of dependent types. In Semantics and
Logics of Computation, pages 79–130. Cambridge University Press, 1997.

[8] M. Hofmann and T. Streicher. The groupoid interpretation of type theory.
In Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford
Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

[9] T. Jech. Set Theory. 2003.

[10] C. Kapulkin, P. L. Lumsdaine, and V. Voevodsky. The simplicial model of
univalent foundations. 2012.

[11] P. L. Lumsdaine. Model structures from higher inductive types. 2011.

[12] P. Martin-Löf. Intuitionistic type theory. 1980.

[13] The Univalent Foundation Program. Homotopy Type Theory.

44

[14] R. A. G Seely. Locally cartesian closed categories and type theory. 1983.

[15] B. van den Berg and R. Garner. Types are weak omega-groupoids. 2008.

[16] M. A. Warren. The strict ω-groupoid interpretation of type theory. 2000.

45

	Preface
	Models of type theory
	Introduction
	Locally cartesian closed categories
	Grothendieck fibrations
	Comprehension categories
	Strictification
	Other structures
	Contextualisation

	Dependent sums and products
	Strictification of sums and products

	Intensional equality
	Trivial cofibrations
	Weak equivalences
	Extensional equality

	Universes
	Type formers in a restricted model

	Examples
	Set model
	Groupoid model
	Presheaf models
	Models in strict ω-categories

