
Mutual and Higher Inductive Types in Homotopy
Type Theory

Paolo Capriotti

August 12, 2014

Abstract

Inductive types can be cleanly represented internally as W-types [14]
[20], that is, as initial algebras of containers [1]. In this paper, we give
a similar presentation that extends the notion of W-type to more gen-
eral forms of induction, including mutually defined data types and higher
inductive types.

1 Introduction

This paper gives a unified presentation of the syntax and semantics of higher
inductive types [12] [16] in Homotopy Type Theory, combining ideas from the
existing purely semantic approach [13] with the dialgebra construction for in-
duction induction [2].

The basic idea is to regard constructors as containers (also known as familially
representable functors, or polynomial functors) on some category 𝒞, with a
forgetful functor 𝑈 to the category of types 𝖳𝗒𝗉𝖾.

The corresponding category of algebras then another category over 𝖳𝗒𝗉𝖾. This
constitutes the basic step of an iterative process, which begins with 𝖳𝗒𝗉𝖾 and
terminates on some category, the initial object of which is the desired inductive
type.

For example, let us consider the classic inductive definition of binary trees 𝐴,
with constructors:

𝑙 ∶ 𝐴
𝑛 ∶ 𝐴 → 𝐴 → 𝐴.

We begin with 𝐶0 = 𝖳𝗒𝗉𝖾, then consider the functor

𝐹0 ∶ 𝒞0 → 𝖳𝗒𝗉𝖾
𝐹0(𝑋) ∶≡ 1,

1



expressing the parameters of the constructor 𝑙. We then take 𝐶1 to be the
category of algebras of 𝐹0, i.e. the category of pointed types. Now we move to
the constructor 𝑛. The associated functor is:

𝐹1 ∶ 𝒞1 → 𝖳𝗒𝗉𝖾
𝐹1(𝑋, 𝑙) ∶≡ 𝑋 × 𝑋,

correspondingly, we get a category of dialgebras 𝐶2.

Note that since 𝐹1 factors through 𝖳𝗒𝗉𝖾, we could have merged these two steps
into one, by taking the coproduct of 𝐹0 and the functor factorising 𝐹1. For
non-mutual, non-higher inductive definitions, it is the case most of the times
that point constructors can be merged into a single one. However, we will see
how allowing constructors to depend on previous ones turns out to be a crucial
feature in the general case.

We could stop here, take the initial object of 𝐶2, and observe that its universal
property is equivalent to the usual eliminator of the corresponding inductive
type. However, to illustrate how higher induction fits into this scheme, we add
a new path constructor:

𝑞 ∶ (𝑥, 𝑦 ∶ 𝐴) → 𝑛(𝑥, 𝑦) ≡ 𝑛(𝑦, 𝑥).

Path constructors require more data. We still need a functor

𝐹2 ∶ 𝒞2 → 𝖳𝗒𝗉𝖾
𝐹2(𝑋, 𝑙, 𝑛) ∶≡ 𝑋 × 𝑋,

determining the parameters of the constructor 𝑞; furthermore, we have to specify
two natural transformations:

𝑙, 𝑟 ∶ 𝐹2 → 𝑈2,

where 𝑈2 ∶ 𝒞2 → 𝖳𝗒𝗉𝖾 is the forgetful functor. The two natural transformations
𝑙 and 𝑟 determine a functor

𝖤𝗊 (𝑙, 𝑟) ∶ ∫
𝒞2

𝐹2 → 𝖳𝗒𝗉𝖾

𝖤𝗊 (𝑙, 𝑟) (𝑋, 𝑙, 𝑛, (𝑥, 𝑦)) ∶≡ (𝑙(𝑥) = 𝑟(𝑥)),

and the category 𝐶3 is obtained as the category of dependent algebras:

𝐶3 ∶≡ (𝑋 ∶ 𝒞2) × ((𝑥 ∶ 𝐹2(𝑋)) → 𝖤𝗊 (𝑙, 𝑟) (𝑋, 𝑥)).

As before, the initial object of 𝐶3 is the required higher inductive type, which
in this case is the type of non-planar binary trees.

The astute reader will have noticed at this point that we have so far been
quite imprecise about what exactly we mean by “category”. In fact, the usual

2



definition [15, chapter 9] does not work here, since 𝖳𝗒𝗉𝖾 itself is not a category
in this sense.

The correct notion to use here is probably that of an (∞, 1)-category, for which
there currently exists no internalisation. We can get very close, however, by
using what we might call semi-Segal types, i.e. semi-simplicial types such that
all Segal maps are equivalences. Unfortunately, semi-simplicial types are also
problematic to internalise, and although techniques to work with them do exist
[17] [4], they are rather convoluted and require the development to be carried
out externally.

Therefore, we will take a shortcut here, and restrict ourselves to sets. In partic-
ular, we replace 𝖳𝗒𝗉𝖾 with 𝖲𝖾𝗍 everywhere, and work with actual (1-)categories.

As a consequence, all our inductive definitions are going to be 0-truncated.
That doesn’t mean that higher constructors are useless, as they can still be
used to construct quotiens, but it does severely limit the expressiveness of the
framework. In particular, we cannot use it to construct higher types like spheres.

Nevertheless, we can still obtain new interesting constructions, which had not
been previously formally developed, like the syntax of type theory with defini-
tional equality.

2 Shapes

Before defining our syntax for constructors, we need to specify the shape of the
induction. The shape determines which of the common induction patterns we
are going to use, and provides the choice of possible constructors that can be
expressed.

Examples of shapes include: simple induction, where a single type is defined, in-
dexed induction, which defines a type family over a fixed type, mutual induction,
where several types are defined simultaneously, or any arbitrary combination
of these. In particular, induction induction [2] can be regarded as a form of
mutual induction where some of the types being defined are also indexed over
some of the others.

We do not address general induction recursion [6] [7], but it is worth noting
that the special case of small induction recursion (i.e. when the codomain of
the recursive definition is not larger than the type being defined) can be obtained
as a special case of indexed induction [9].

Definition 2.1. The 2-category of sorts is the full sub-2-category of 𝖢𝖺𝗍 gen-
erated by 𝖲𝖾𝗍 and 1.

Sorts classify the artefacts of an inductive definition. The sort 𝖲𝖾𝗍 corresponds
to the types being defined, whereas 1 corresponds to indices.

3



Definition 2.2. A shape is a finite 2-diagram in the 2-category of sorts, i.e. a
strict 2-functor from a finite strict 2-category to the 2-category of sorts.

A shape determines the relationship between types and indices. For example,
to define an indexed type 𝐴 ∶ ℕ → 𝖲𝖾𝗍 by induction, we can use the shape

1 ℕ // 𝖲𝖾𝗍.

For a mutual induction with no indices involved, we can use a discrete diagram
with several copies of 𝖲𝖾𝗍 as the shape.

For an induction induction with types 𝐴 ∶ 𝖲𝖾𝗍 and 𝐵 ∶ 𝐴 → 𝖲𝖾𝗍, we would take

𝖲𝖾𝗍 id // 𝖲𝖾𝗍.

However, our definition of shape is much more general than this. We can have
arbitrarily complicated indexing structures, like:

𝐴 ∶ ℕ → 𝖲𝖾𝗍
𝐵 ∶ 𝐴(3) → 𝖲𝖾𝗍,

which is represented by the shape:

1 ℕ //

1

??𝖲𝖾𝗍 id // 𝖲𝖾𝗍
3
KS

Definition 2.3. Let 𝑆 be a shape. The base category of 𝑆 is the oplax limit of
𝑆.

The base category is where the construction of the inductive type begins. All
the categories that we construct will be equipped with a forgetful functor to the
base category.

In the case of simple induction, the base category is 𝖲𝖾𝗍 itself. In general, it is
the category of types with indices arranged in exactly the configuration dictated
by the shape. The result of an inductive definition is going to correspond to an
object in this category.

3 Containers

In this section, we generalise the notion of container [1] [8] to functors from an
arbitrary category to 𝖲𝖾𝗍. These are sometimes called familially representable
functors [5].

4



Definition 3.1. A container is given by

• A set 𝐴. The elements of 𝐴 are called shapes.

• A family 𝐵 ∶ 𝐴 → 𝖲𝖾𝗍 with base 𝐴. For any 𝑎 ∶ 𝐴, the elements of 𝐵(𝑎)
are called positions.

Definition 3.2. Let 𝐹 be a container given by shapes 𝐴 and positions 𝐵. The
extension of 𝐹 is the functor (also denoted 𝐹 ) given on objects by:

𝐹 ∶ 𝖲𝖾𝗍 → 𝖲𝖾𝗍
𝐹(𝑋) ∶≡ ∑(𝑎 ∶ 𝐴). 𝐵(𝑎) → 𝑋 (1)

Definition 3.3. Let 𝐹1, 𝐹2 be containers, with shapes 𝐴1, 𝐴2, and positions
𝐵1, 𝐵2. A morphism 𝐹1 → 𝐹2 is given by

• A function 𝑓 ∶ 𝐴1 → 𝐴2.

• A function 𝑔 ∶ ∏(𝑎 ∶ 𝐴1). 𝐵2(𝑓(𝑎)) → 𝐵1(𝑎).

A morphism of containers (𝑓, 𝑔) ∶ 𝐹1 → 𝐹2 determines a natural transformation
between the two extensions as follows:

𝛼 ∶ (𝑋 ∶ 𝖲𝖾𝗍) → 𝐹1(𝑋) → 𝐹2(𝑋)
𝛼𝑋〈𝑎, 𝑢〉 ∶≡ 〈𝑓(𝑎), 𝑢 ∘ 𝑔𝑎〉 (2)

4 Constructors

A constructor is given by two pieces of data:

• the parameters;

• the target.

For example, consider the constructor 𝑞 from the introduction:

𝑞 ∶ (𝑥, 𝑦 ∶ 𝐴) → 𝑛(𝑥, 𝑦) = 𝑛(𝑦, 𝑥).

The parameters of 𝑞 are given by the functor 𝐹(𝑋, 𝑙, 𝑛) ∶≡ 𝑋 × 𝑋. The target
is given by the functor 𝐺(𝑋, 𝑙, 𝑛, (𝑥, 𝑦)) ∶≡ 𝑛(𝑥, 𝑦) = 𝑛(𝑦, 𝑥).
Both the parameters and target of a constructors are subject to certain restric-
tions.

Intuitively, the functor 𝐹 defining the parameters of a constructor is required
to be “strictly positive”, which we will approximate by requiring that 𝐹 be a
container.

5



Functors for targets are even more restricted. Intuitively, only functors returning
one of the types being defined, or some equality of those types, make sense as
targets.

Parameters of a constructors may also include indices. For instance, when
defining vectors (i.e. length-indexed lists) as an indexed inductive type 𝑉 ∶ ℕ →
𝖲𝖾𝗍, one typically has a constructor of the form:

𝗇𝗂𝗅 ∶ 𝑉 (0)

and the 0 argument of 𝑉 has to be provided as part of the specification of the
constructor parameters.

For the rest of this section, let 𝑆 ∶ 𝐽 → 𝖢𝖺𝗍 be a shape, and 𝒞0 its base category.
Let 𝒞 be any category equipped with a (forgetful) functor 𝑈 ∶ 𝒞 → 𝒞0. For
any 𝑗 ∶ 𝐽 , we denote by 𝐽/𝑗 the slice 2-category over 𝑗, and by 𝐽//𝑗 its sub-2-
category generated by all the objects except the identity morphism on 𝑗.

Definition 4.1. Let 𝑗 ∶ 𝐽 be a 0-cell in the shape diagram. A 𝑗-cone is an oplax
cone for 𝑆 over 𝐽/𝑗 such that its restriction to 𝐽//𝑗 is the cone induced by the
forgetful functor 𝑈 .

For any 𝑗, 𝑗-cones form a category, morphisms being modifications that re-
strict to the identity on 𝐽//𝑗. The category of 𝑗-cones can be regarded as a
subcategory of the category of functors 𝒞 → 𝒞0.

The forgetful functor 𝑈 trivially induces a 𝑗-cone, which we will refer to as the
trivial 𝑗-cone, and denote 𝑈𝑗.

Given a 𝑗-cone 𝐹 , we denote by ̄𝐹 its component on the identity of 𝑗. Note that
𝐹 is completely specified by the single functor ̄𝐹 , together with a finite number
of natural transformations.

If 𝑆𝑗 = 𝖲𝖾𝗍, we can form the category category ∫𝒞
̄𝐹 , which is itself equipped

with a forgetful functor to 𝒞0. We can therefore talk about 𝑗-cones on ∫𝒞
̄𝐹 as

well. There is a canonical such 𝑗-cone, denoted 𝑇 𝐹 , with:

𝑇 𝐹
𝑗 ∶ ∫

𝒞
̄𝐹 → 𝒞0

𝑇 𝐹
𝑗 (𝑋, 𝑥) ∶≡ 1

.

The functor 𝑇 𝐹 is characterised by the property:

𝖫𝖺𝗇(𝐹) = 𝑇 𝐹 ,

where the left Kan extension is taken over the forgetful functor ∫𝒞
̄𝐹 → 𝒞.

6



Lemma 4.2. Suppose 𝑆𝑗 = 𝖲𝖾𝗍, let 𝐹 be a 𝑗-cone on 𝒞, 𝐺 a 𝑗-cone on ∫𝒞
̄𝐹 ,

and 𝑙, 𝑟 ∶ 𝑇 𝐹 → 𝐺 𝑗-cone morphisms. The functor

𝖤𝗊 (𝑙, 𝑟) ∶ ∫
𝒞

̄𝐹 → 𝒞0

𝖤𝗊 (𝑙, 𝑟) (𝑋, 𝑥) ∶≡ (𝑙𝑗(𝑋, 𝑥) = 𝑟𝑗(𝑋, 𝑥))

is a 𝑗-cone.

We are now ready to define constructors.

Definition 4.3. For any 𝑗 ∶ 𝐽 , a 𝑗-parameter is a 𝑗-cone whose 𝑗-th component
is a container.

Definition 4.4. Let 𝐹 be a 𝑗-parameter. A target for 𝐹 is a functor ∫𝒞
̄𝐹 → 𝒞0

defined inductively as follows:

• the trivial 𝑗-cone 𝑈𝑗 is a target;

• for any target 𝐺, and 𝑗-cone morphisms 𝑙, 𝑟 ∶ 𝑇 𝐹 → 𝐺, the 𝑗-cone 𝖤𝗊 (𝑙, 𝑟)
is a target.

Definition 4.5. A constructor is given by:

• a node 𝑗, with 𝑆𝑗 = 𝖲𝖾𝗍;
• a 𝑗-parameter 𝐹 ;

• a target for 𝐹 .

We say that a constructor (𝑗, 𝐹 , 𝐺) is a point constructor if 𝐺 is the trivial
𝑗-cone; otherwise, we say that it is a higher constructor.

5 Algebras

As in section 4, let 𝑆 ∶ 𝐽 → 𝖢𝖺𝗍 be a shape, 𝒞0 its base category, and 𝒞 any
category with a forgetful functor 𝑈 ∶ 𝒞 → 𝒞0.

Definition 5.1. Let 𝑐 = (𝑗, 𝐹 , 𝐺) be a constructor on 𝒞. An algebra for 𝑐 is
given by:

• an object 𝑋 of 𝒞,

• a 𝑗-cone morphism 𝑓 ∶ 𝑇 𝐹 ∘ 𝑋 → 𝐺 ∘ 𝑋,

7



where 𝑋 denotes the functor

𝑋 ∶ ̄𝐹 (𝑋) → ∫
𝒞

̄𝐹

𝑋(𝑥) ∶≡ (𝑋, 𝑥),

and ̄𝐹 (𝑋) is regarded as a discrete category.

Algebras of a constructor form a category 𝖠𝗅𝗀𝒞𝑐. It is easy to see that, when the
target 𝐺 is the trivial 𝑗-cone, algebras of 𝑐 correspond exactly to the dialgebras
used in [2].

More generally, the target 𝐺 is allowed to depend on 𝑥. Therefore, an algebra
over 𝑋 is given by a dependent function:

(𝑥 ∶ ̄𝐹 (𝑋)) → 𝐺(𝑋, 𝑥),

compatible with the 𝑗-cone structures of 𝐹 and 𝐺.

Definition 5.2. An inductive specification is a finite sequence of constructors
(𝑐0, … , 𝑐𝑛), where 𝑐0 is a constructor on 𝒞0, and 𝑐𝑖+1 is a constructor over the
category of algebras of 𝑐𝑖. An algebra of the inductive specification is just an
algebra of 𝑐𝑛. An inductive type is an initial algebra of an inductive specification.

Under no assumptions on the ambient type theory, we cannot say much about
categories of algebras of inductive specifications. However, we can show that
the inductive framework just introduced always produces valid inductive types,
given the existence of simple W-types and quotients:

Proposition 5.3. If every container has an initial algebra and coequalisers
exist in 𝖲𝖾𝗍, then every inductive specification has an initial algebra.

In fact, the converse also holds, since both initial algebras of containers and
coequalisers can be realised with simple inductive specifications. The hypotheses
of proposition 5.3 are verified in a large class of models of Homotopy Type
Theory, including simplicial sets, or more generally simplicial presheaves over
elegant Reedy categories [13] [18].

The following result follows from proposition 5.3, and shows that common ex-
amples can indeed be encoded within the framework of inductive specifications
(see section 6).

Proposition 5.4. Let 𝒞 be the category of algebras of an inductive specification,
and 𝑗 be any node with 𝑆𝑗 = 𝖲𝖾𝗍. The trivial 𝑗-cone is a 𝑗-parameter.

8



6 Examples

6.1 Non-planar trees

We will revisit the example of the introduction, and show how it can be obtained
as an initial algebra of an inductive specification.

We are defining a single type, so the shape diagram 𝑆 in this case is particularly
simple: only one node ∗ of sort 𝖲𝖾𝗍, with no cells. The corresponding base
category 𝒞0 is just 𝖲𝖾𝗍 itself. Therefore, ∗-cones are just functors to 𝖲𝖾𝗍.
The 𝑙 constructor does not have any parameters. Therefore, we define:

𝐹0 ∶ 𝒞0 → 𝖲𝖾𝗍𝐹0(𝑋) ∶≡ 1.

The functor 𝐹0 is clearly a container, so it defines a ∗-parameter. The corre-
sponding target is just the identity. We then get a category of algebras, whose
objects are given by:

𝒞1 ≡ (𝑋 ∶ 𝖲𝖾𝗍) × 𝑋,
since an (∗, 𝐹0, id)-algebra is none other than a pointed set.

The parameter for the 𝑛 constructor is given by:

𝐹1 ∶ 𝒞1 → 𝖲𝖾𝗍𝐹1(𝑋, 𝑙) ∶≡ 𝑋 × 𝑋.

Proposition 5.4 implies that 𝐹1 is a container, since it can be obtained by
composing the container 𝑋 ↦ 𝑋 × 𝑋 on 𝖲𝖾𝗍 with the trivial ∗-cone.

Again, the target is the trivial ∗-cone, and the corresponding category of algebras
is given by:

𝒞2 ∶ (𝑋 ∶ 𝖲𝖾𝗍) × (𝑙 ∶ 𝑋) × (𝑋 → 𝑋 → 𝑋).

We now get to the path constructor 𝑞. The parameter is given by:

𝐹2 ∶ 𝒞2 → 𝖲𝖾𝗍
𝐹2(𝑋, 𝑙, 𝑛) ∶≡ 𝑋 × 𝑋,

which is a container by proposition 5.4 again. To define the target, we need two
natural transformations:

𝑙, 𝑟 ∶ 𝑇 𝐹2 → 𝑈 ∶ ∫
𝐶2

𝐹2 → 𝖲𝖾𝗍.

In the introduction, we gave an equivalent presentation of 𝑙 and 𝑟 as transfor-
mations 𝐹2 → 𝑈2. The definitions of 𝑙 is:

𝑙(𝑋,𝑙,𝑛,(𝑥,𝑦))(∗) ∶≡ 𝑛(𝑥, 𝑦),

and similarly for 𝑟 (with 𝑥 and 𝑦 swapped). Of course, in pratice one might
prefer to express 𝑙 and 𝑟 as container morphisms, which can be easily done

9



by unfolding the representation of 𝑈2 as a container. This has the advantage
that there is no need to prove naturality, and allows the definition to be easily
generalised to an untruncated setting (see section 7.3).

Now we take (∗, 𝐹2, 𝖤𝗊 (𝑙, 𝑟)) as our constructor, and the initial object of the
corresponding category of algebras is the resulting inductive type of non-planar
trees.

6.2 Contexts and types

We can also obtain the main example of [2] in our system: we want to simulta-
neously define a type 𝖢𝗈𝗇 ∶ 𝖲𝖾𝗍 and a family 𝖳𝗒 ∶ 𝐶 → 𝖲𝖾𝗍, equipped with the
following constructors:

𝗇𝗂𝗅 ∶ 𝖢𝗈𝗇
𝖼𝗈𝗇𝗌 ∶ (Γ ∶ 𝖢𝗈𝗇) → 𝖳𝗒(Γ) → 𝖢𝗈𝗇
𝖻𝖺𝗌𝖾 ∶ (Γ ∶ 𝖢𝗈𝗇) → 𝖳𝗒(Γ)
𝗉𝗂 ∶ (Γ ∶ 𝖢𝗈𝗇)(𝐴 ∶ 𝖳𝗒(Γ)) → 𝖳𝗒(𝖼𝗈𝗇𝗌(Γ, 𝐴)) → 𝖳𝗒(Γ).

Now the shape diagram is slightly more complicated. Namely, it has two nodes
𝑎 and 𝑏, with an arrow 𝑎 → 𝑏. Both nodes are mapped to 𝖲𝖾𝗍, and the arrow
to the identity functor. The diagram therefore looks like this:

𝖲𝖾𝗍 id // 𝖲𝖾𝗍.

The base category is simply the category of families of sets, which we represent
using indexing (see 7.1 for a discussion about indices versus functions):

𝒞0 ≡ (𝐶 ∶ 𝖲𝖾𝗍) × (𝐶 → 𝖲𝖾𝗍).

The constructors 𝗇𝗂𝗅 and 𝖼𝗈𝗇𝗌 can be defined similarly to the point construc-
tors of the previous example, as they are given simply by a container as the
𝑎-parameter and the trivial 𝑎-cone as the target. Note that since 𝑎 is the ini-
tial node in the diagram, an 𝑎-cone is just a functor to 𝖲𝖾𝗍. Once these two
constructors are defined, we obtain a category of algebras:

𝒞2 ∶≡ (𝐶 ∶ 𝖲𝖾𝗍) × (𝑇 ∶ 𝐶 → 𝖲𝖾𝗍) × (𝑛 ∶ 𝐶) × (𝑐 ∶ (Γ ∶ 𝐶) → 𝑇 (Γ) → 𝐶).

The 𝖻𝖺𝗌𝖾 container is already more interesting. Its parameter is now a 𝑏-cone,
which is given by a functor:

𝐹2 ∶ 𝒞2 → 𝖲𝖾𝗍
𝐹2(𝐶, 𝑇 , 𝑛, 𝑐) ∶≡ 𝐶,

10



together with a natural transformation

𝛼 ∶ 𝐹2 → 𝑈𝑎

𝛼(𝐶,𝑇,𝑛,𝑐)(Γ) ∶≡ Γ,

specifying the value of the index. The target is again trivial (the trivial 𝑏-cone
in this case).

Now the category of algebras is composed of objects 𝑋 of 𝒞2, together with
𝑏-cone morphisms:

𝑇 𝐹2 ∘ 𝑋 → 𝑈𝑏 ∘ 𝑋.
Since the target is trivial, this can be simplified to a 𝑏-cone morphism:

𝐹2 ∘ 𝑋 → 𝑈𝑏 ∘ 𝑋,

where 𝑋 is regarded as a functor 1 → 𝒞2. By expanding the definition, this
amounts to a function 𝑓 ∶ 𝐹2(𝑋) → 𝑈𝑏(𝑋) such that the diagram:

𝐹2(𝑋) 𝑓 //

𝛼𝑋 $$

𝑈𝑏(𝑋)

zz
𝑈𝑎(𝑋),

commutes. Therefore, we get:

𝒞3 ≡ ((𝐶, 𝑇 , 𝑛, 𝑐) ∶ 𝒞2) × ((𝑥 ∶ 𝐹2(𝐶, 𝑇 , 𝑛, 𝑐)) → 𝑇 (𝛼(𝑥)))
≡ (𝐶 ∶ 𝖲𝖾𝗍) × (𝑇 ∶ 𝐶 → 𝖲𝖾𝗍) × (𝑛 ∶ 𝐶)
× (𝑐 ∶ (Γ ∶ 𝐶) → 𝑇 (Γ) → 𝐶) × ((Γ ∶ 𝐶) → 𝑇 (Γ)),

as expected.

The last constructor 𝗉𝗂 is defined similarly. Note that the parameter of 𝗉𝗂 de-
pends on the previous constructor 𝖼𝗈𝗇𝗌. This is where our iterative approach
shows its strength: by being able to define each constructor over the algebras
of the previous one, we can encode such dependencies without any difficulty.

The end result is the initial object of the category

𝒞4 ≡ (𝐶 ∶ 𝖲𝖾𝗍) × (𝑇 ∶ 𝐶 → 𝖲𝖾𝗍) × (𝑛 ∶ 𝐶)
× (𝑐 ∶ (Γ ∶ 𝐶) → 𝑇 (Γ) → 𝐶) × (𝑏 ∶ (Γ ∶ 𝐶) → 𝑇 (Γ))
× (𝑝 ∶ (Γ ∶ 𝐶)(𝐴 ∶ 𝑇 (Γ)) → 𝑇 (𝑐(Γ, 𝐴)) → 𝑇 (Γ)).

6.3 The circle and the torus

Although our system is limited to 0-truncated types, we are still able to express
the inductive specifications of higher types. Of course, the results are going to

11



be 0-truncated versions of the desired higher inductive types, which are not very
useful, but can serve to illustrate how our definition of higher constructor would
work in the untruncated setting (see section 7.3).

We begin with the circle 𝑆1 ∶ 𝖲𝖾𝗍, defined inductively by the two constructors:

𝑏 ∶ 𝑆1

𝑝 ∶ 𝑏 = 𝑏.

The definition of the inductive specification for 𝑆1 proceeds similarly to the
non-planar tree example (section 6.1). The resulting category of algebras is:

𝒞2 ≡ (𝑋 ∶ 𝖲𝖾𝗍) × (𝑏 ∶ 𝑋) × (𝑏 = 𝑏).

Of course, 𝐶2 is isomorphic to the category of pointed sets, since the third
component is always trivial (𝑋 is a set!), but we will ignore this for the sake of
the example.

To get to the torus, we first need to add another constructor 𝑞, essentially
identical to 𝑝, producing the category:

𝒞3 ≡ (𝑋 ∶ 𝖲𝖾𝗍) × (𝑏 ∶ 𝑋) × (𝑏 = 𝑏)2.

Finally, we add the last constructor, expressing the commutativity of 𝑝 and 𝑞:

𝛼 ∶ 𝑝 · 𝑞 = 𝑞 · 𝑝, (3)

where · denotes path concatenation (i.e. transitivity of equality).

The parameter 𝐹3 is trivial:

𝐹3 ∶ 𝒞3 → 𝖲𝖾𝗍
𝐹3(𝑋) ∶≡ 1,

hence we can identify ∫𝒞3
𝐹 with 𝒞3.

The target, being a higher constructor of level 2, is more involved. We first
define natural transformations

𝑙, 𝑟 ∶ 1 → 𝑈
𝑙(𝑋,𝑏,𝑝,𝑞)(∗) ∶≡ 𝑏
𝑟(𝑋,𝑏,𝑝,𝑞)(∗) ∶≡ 𝑏,

and consider the functor 𝖤𝗊 (𝑙, 𝑟):

𝖤𝗊 (𝑙, 𝑟) ∶ 𝒞3 → 𝖲𝖾𝗍
𝖤𝗊 (𝑙, 𝑟) (𝑋, 𝑏, 𝑝, 𝑞) ∶≡ (𝑏 = 𝑏).

12



Now we can define natural transformations 𝑙′, 𝑟′ ∶ 1 → 𝖤𝗊 (𝑙, 𝑟), corresponding to
the two sides of the equality of the constructor 𝛼 in (3). By Yoneda, such a nat-
ural transformation is equivalently expressed as an element of 𝖤𝗊 (𝑙, 𝑟) (0𝒞2

) ≡
(𝑏0 = 𝑏0), where 0𝒞2

≡ (𝑋0, 𝑏0, 𝑝0, 𝑞0) is the initial object of 𝒞3.

We then take 𝑙′ to be the natural transformation corresponding to 𝑝0 · 𝑞0 and 𝑟′

the one corresponding to 𝑞0 · 𝑝0. It is easy to see that they behave as expected,
producing the target 𝐺3 ≡ 𝖤𝗊 (𝑙′, 𝑟′):

𝐺3 ∶ 𝒞3 → 𝖲𝖾𝗍
𝐺3(𝑋, 𝑏, 𝑝, 𝑞) ∶≡ (𝑝 · 𝑞 = 𝑞 · 𝑝),

and resulting in the category of algebras:

𝒞4 ∶≡ (𝑋 ∶ 𝖲𝖾𝗍) × (𝑏 ∶ 𝑋) × (𝑝, 𝑞 ∶ 𝑏 = 𝑏) × (𝑝 · 𝑞 = 𝑞 · 𝑝).

7 Limitations and further work

The induction framework presented in this paper is in some ways much more
general than existing treatments, but is fundamentally lacking in many aspects:

1. it does not take indexing into account;

2. it only allows covariant dependencies between the types being defined;

3. it does not allow arbitrary inductive-recursive definitions (not even small)
with values in one of the types being defined;

4. it only considers 0-truncated types.

We will describe those points in the details in the following, and suggest possible
extensions to the framework to address them.

7.1 Taking indexing into account

Definition 2.2 allows to specify dependencies between types, but it does not
say whether dependencies are to be intended as indices or simply as inductive-
recursive functions.
When we just work internally (therefore modulo equivalence), the distinction
does not matter. However, if we are interested in computational properties of
the resulting inductive type, we might notice a difference in reduction behaviour.
For example, consider a shape of the form id ∶ 𝖲𝖾𝗍 → 𝖲𝖾𝗍. The resulting initial
algebra can be either regarded as a set together with a family:

𝐴 ∶ 𝖲𝖾𝗍
𝐵 ∶ 𝐴 → 𝖲𝖾𝗍,

13



or as two sets and a function:

𝑋 ∶ 𝖲𝖾𝗍
𝑌 ∶ 𝖲𝖾𝗍
𝑓 ∶ 𝑌 → 𝑋,

Now, suppose the inductive definition contains constructors (using a syntax
corresponding to the first interpretation):

𝑎0 ∶ 𝐴
𝑏0 ∶ 𝐵(𝑎0),

in the second interpretation, they would look like:

𝑥0 ∶ 𝑋
𝑦0 ∶ 𝑌
𝑝0 ∶ 𝑓(𝑦0) = 𝑥0,

and there is no reason why the equality represented by 𝑝0 should be judgemental.
Furthermore, when taking computational properties into account, inductive
types are required to be more than just initial algebras. Namely, the usual
elimination property is equivalent to requiring that every algebra fibration has
an algebra section.

Categories of algebras therefore need to be equipped with some fibrational struc-
ture in order to make this definition precise, and then we could show that this
condition is equivalent to initiality, as it is already known for simple induction
[3], induction induction [2], and certain special cases of higher inductive types
[19].
One possible solution is to augment shapes with a distinguished acyclic sub-
diagram, signalling which type dependencies should be realised via indexing.
Consequently, oplax cones will have to be Reedy-fibrant with respect to the
acyclic portion of the diagram (similarly to the gluing construction in [17]).

7.2 Generalising dependencies between nodes

There is no reason why the dependencies appearing in a shape diagram have to
be expressed as functors.

For example, if 𝐹 ∶ 𝖲𝖾𝗍op → 𝖲𝖾𝗍 is a contravariant functor, definition 2.2 does
not allow an inductive specification resulting in a pair of types of the form:

𝐴 ∶ 𝖲𝖾𝗍
𝐵 ∶ 𝐹(𝐴) → 𝖲𝖾𝗍,

which is, for example, perfectly valid in Agda.

14



Another example which is not covered is provided by certain (small) inductive-
recursive definitions with values in one of types being defined. For instance, the
following “shape”:

𝐴 ∶ 𝖲𝖾𝗍
𝐵 ∶ 𝖲𝖾𝗍
𝑓 ∶ 𝐴 → 𝐵 → 𝐴,

cannot be realised within the current system.

One idea to generalise the framework to incorporate such definitions is to replace
𝖢𝖺𝗍 with the generalised multicategory of categories and multivariate functors
(as described for example in [11, example 4.2.9]), and shapes with “multidia-
grams”.

This has the pleasant side-effect of removing the need for the special sort 1,
since indexing dependencies could be expressed directly with a nullary functor.

7.3 Generalising to untruncated types

By far the most problematic limitation of the current approach is that it is
limited to 0-truncated types. This has the disturbing consequence that path
constructors higher than level 1, although possible, are completely inconsequen-
tial.

The reason for this limitation, as explained in the introduction, is that the
notion of category that we use is not powerful enough to accurately describe
the categories of algebras that we work with, nor their functors and natural
transformations. In particular, 𝖳𝗒𝗉𝖾 itself is not a category in the proper sense.

However, since we make heavy use of containers and container morphisms, which
can be defined only in terms of objects, it might seem that it should be possible
to get away with a more naive definition of “category”, for example, one without
the restriction that the morphisms form a set.

Unfortunately, this approach is bound to fail, since the number of coherence
properties that we need to impose on morphisms turns out to be equal to the
number of constructors. Therefore, even if a simple definition of category in-
cluding objects, morphisms, composition and associativity would be enough to
express inductive specifications with 2 constructors, at step 3 we would be able
to define algebras, but not their morphisms.

It is probably impossible to work with an approximated notion of category that
does not take all the coherence properties into account. The most promising
approach seems to be using semi-Segal types [10] to formalise the tower of
coherence conditions on morphisms.

To carry out this plan in full generality, we need to employ untruncated semi-
simplicial types, which usually means stepping out of the type theory and work
externally in a model of Reedy-fibrant presheaves.

15



Alternatively, one could just settle on a finite truncation index, and use a finite
axiomatisation of semi-Segal types by exploiting the fact that equality over a
certain level is trivial.

For example, by setting the truncation level to 1, one would only require three
coherence conditions (corresponding to composition, associators and pentagon
identities). Level 1 would be already enough to express many interesting higher
inductive types, like the circle, the torus, and the Rezk completion.

References

[1] Michael Abott, Thorsten Altenkirch, and Neil Ghani. Containers - Con-
structing Strictly Positive Types. Theoretical Computer Science, 342:3–27,
September 2005.

[2] Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg, and Anton
Setzer. A Categorical Semantics for Inductive-Inductive Definitions. In
CALCO, pages 70–84, 2011.

[3] Steve Awodey, Nicola Gambino, and Kristina Sojakova. Inductive types in
homotopy type theory. ArXiv e-prints, January 2012.

[4] Paolo Capriotti and Nicolai Kraus. Eliminating Higher Truncations via
Constancy.

[5] Aurelio Carboni and Peter Johnstone. Connected Limits, Familial Rep-
resentability and Artin Glueing. Mathematical Structures in Computer
Science, 5(4):441–459, 1995.

[6] Peter Dybjer and Anton Setzer. A Finite Axiomatization of Inductive-
Recursive Definitions. volume 1581 of Lecture Notes in Computer Science,
pages 129–146. Springer, 1999.

[7] Peter Dybjer and Anton Setzer. Induction-recursion and initial algebras.
Ann. Pure Appl. Logic, 124(1-3):1–47, 2003.

[8] Nicola Gambino and Martin Hyland. Wellfounded Trees and Dependent
Polynomial Functors. volume 3085 of Lecture Notes in Computer Science,
pages 210–225. Springer, 2003.

[9] Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and
Thorsten Altenkirch. Small induction recursion. In Typed Lambda Cal-
culi and Applications, 11th International Conference, TLCA 2013, pages
156–172, 2013.

[10] Yonatan Harpaz. Quasi-unital ∞-categories. ArXiv e-prints, September
2012.

16



[11] Tom Leinster. Higher Operads, Higher Categories. August 2004.

[12] Peter Lumsdaine. Higher Inductive Types: a tour of the menagerie. Ho-
motopy Type Theory Blog, April 2011.

[13] Peter Lumsdaine and Michael Shulman. Semantics of Higher Inductive
Types.

[14] Ieke Moerdijk and Erik Palmgren. Wellfounded Trees in Categories, 1999.

[15] The Univalent Foundations Program. Homotopy type theory: Univalent
foundations of mathematics. first edition, 2013.

[16] Michael Shulman. Homotopy Type Theory VI. The 𝑛-Category Café, April
2011.

[17] Michael Shulman. Univalence for inverse diagrams and homotopy canonic-
ity. ArXiv e-prints, March 2012.

[18] Michael Shulman. The univalence axiom for elegant Reedy presheaves.
ArXiv e-prints, July 2013.

[19] Kristina Sojakova. Higher Inductive Types as Homotopy-Initial Algebras.
ArXiv e-prints, February 2014.

[20] Benno van den Berg and Ieke Moerdijk. W-types in Homotopy Type The-
ory. ArXiv e-prints, July 2013.

17


	Introduction
	Shapes
	Containers
	Constructors
	Algebras
	Examples
	Non-planar trees
	Contexts and types
	The circle and the torus

	Limitations and further work
	Taking indexing into account
	Generalising dependencies between nodes
	Generalising to untruncated types


