
Inheritance and Overloading in Agda

Paolo Capriotti

June 17, 2013



Notation

I Abuses of notation are very common in mathematics
I Ambiguities are used to make formulas more expressive
I We want to do the same in Agda!



Example: algebra and category theory



Using modules I

record Monoid : Set1 where
field

carrier : Set
unit : carrier
_*_ : carrier → carrier → carrier

record Group : Set1 where
field

carrier : Set
unit : carrier
_*_ : carrier → carrier → carrier
inv : carrier → carrier



Using modules II

Good enough with one Monoid or Group in scope:

M : Monoid

open Monoid M



Using modules III

What if we have more than one?

M : Monoid
G : Group

open Monoid M renaming
( carrier to |M| –
; unit to unit-M –
; _*_ to _*M_ )

open Group G renaming
( carrier to |G| –
; unit to unit-G –
; _*_ to _*G_ )

Yuck...



“Real world” example

Can we do better?



Instance arguments I

I Enclosed in double curly braces: {{ a : A }}
I They are automatically inferred
I The search is limited to the current scope
I Inference only works if there is exactly one match
I Special syntax to set a record as implicit parameter for all its

fields:

record X : Set where
– ...

open X {{ ... }}



Instance arguments II

record IsMonoid (X : Set) : Set where
field

unit : X
_*_ : X → X → X

Monoid = Σ Set IsMonoid

open IsMonoid {{ ... }}



Instance arguments III

record IsGroup (M : Monoid) : Set where
private X = proj1 M
field

inv : X → X

Group = Σ Monoid IsGroup

open IsGroup {{ ... }}



Enabler modules

I Deeply nested instances of IsX records can be awkward to
bring into scope

I Enabling overloaded definitions for all super-types requires
boilerplate at every invocation

I Solution: write boilerplate only once per type

module enable-mon (M : Monoid) where
mon-instance = proj2 M

module enable-grp (G : Group) where
open enable-mon (proj1 G) public
grp-instance = proj2 G



Enabler modules

I Deeply nested instances of IsX records can be awkward to
bring into scope

I Enabling overloaded definitions for all super-types requires
boilerplate at every invocation

I Solution: write boilerplate only once per type

module enable-mon (M : Monoid) where
mon-instance = proj2 M

module enable-grp (G : Group) where
open enable-mon (proj1 G) public
grp-instance = proj2 G



Coercions

I We want to define things for Monoid and apply them to any
subtype

I We want to be able to “apply” things that are not strictly
functions

I Solution: define coercions manually, and use them as instance
arguments

I A lot of boilerplate required for each new type, but client code
looks nice



Coercions

I We want to define things for Monoid and apply them to any
subtype

I We want to be able to “apply” things that are not strictly
functions

I Solution: define coercions manually, and use them as instance
arguments

I A lot of boilerplate required for each new type, but client code
looks nice



Coercions

I We want to define things for Monoid and apply them to any
subtype

I We want to be able to “apply” things that are not strictly
functions

I Solution: define coercions manually, and use them as instance
arguments

I A lot of boilerplate required for each new type, but client code
looks nice



Conclusion

I Code on github:
http://github.com/pcapriotti/agda-base

I Typechecking is really slow
I How to get rid of the boilerplate?

http://github.com/pcapriotti/agda-base

